
Version 2.0

SystemDocumentation

LOLA { Library of Location Algorithms1

Working Group Professor H. W. Hamacher

Fachbereich Mathematik

Universit�at Kaiserslautern

Coordinators: Horst W. Hamacher, Holger Hennes, Kathrin Klamroth, Martin C. M�uller,

Stefan Nickel and Anita Sch�obel

Home-page: http:nnwww.mathematik.uni-kl.den~lola

E-mail: lola@mathematik.uni-kl.de

1Partially supported by a grant of the Deutsche Forschungsgemeinschaft.

Contents

1 Introduction 1

I Getting Started with LOLA 3

2 A Guided Tour through the LOLA Frontend 5

2.1 The classical 1-facility median problem . 6

2.2 A planar problem with polyhedral gauges . 7

2.3 A network-problem . 8

2.4 A discrete problem . 9

3 Location Algorithms Available in LOLA 13

4 Format of the Input Data 17

4.1 File Type loc (containing location data) . 17

4.2 File Type mat (containing the information about interactions between the

new facilities in case of N-Facilities problems) 18

4.3 File Type res (containing the information about restrictions) 18

4.4 File Type gauge (containing the data of polyhedral gauges) 20

4.5 File Type graph (containing the location and network information for network

problems) . 21

4.6 File Type dis (containing data for discrete location problems) 23

4.7 File Type sol (containing solution data) . 26

5 Writing a LOLA Application 29

i

ii CONTENTS

6 A Classi�cation Scheme for Location Problems 33

7 The Components of LOLA 35

7.1 GUI { Graphical User Interface . 35

7.2 Text Based Version of LOLA . 38

7.3 Graphical Editor . 43

7.3.1 File . 43

7.3.2 Options . 44

7.4 Other Software Used by LOLA . 46

8 System Design 47

8.1 System Structure . 47

8.2 Component Structure Type P . 48

8.3 Library Inclusions Type P . 48

II The LOLA Libraries 51

9 Unrestricted Planar Classes 53

9.1 Real-Valued Location-Vectors (Loc Vector) 53

9.2 Real-Valued Locations with weights (location) 55

9.3 Line (Line) . 56

9.4 1-line-algorithms (lines) . 58

9.5 Facilities (facilities) . 61

9.6 Facilities-utilities (facs util) . 67

10 Restricted Planar Classes 69

10.1 Restriction (restriction) . 69

10.2 Polygon as a restriction (restr poly) . 71

10.3 Circle as a restriction (restr circle) . 72

CONTENTS iii

10.4 Rectangle as a restriction (restr rect) . 73

10.5 Algorithms for Forbidden Regions (restrictions) 74

10.6 Polygon as a barrier (polygon barrier) . 75

10.7 Circle as a barrier (circle barrier) . 76

10.8 Segment as a barrier (segment barrier) . 77

10.9 Algorithms for Barriers (barrier) . 78

10.10Restriction-utilities (restr util) . 78

11 Planar Classes with Gauges 81

11.1 Polyhedral Gauges (polygauge) . 81

11.2 Mixed Gauges (mixgauge) . 84

11.3 Gauge-utilities (gauge util) . 88

12 Graph Classes 91

12.1 Basic Classes for Graphs (sol typ, edge segment, node weight in graphsolution.h) 91

12.2 Lolagraph (classlolagraph) . 92

12.3 Directed Graphs (loladirected) . 93

12.4 Undirected Graphs (lolaundirected) . 94

12.5 Trees (lolatree) . 94

12.6 Graph-utilities (graph util) . 95

13 Discrete Classes 97

13.1 Discrete Locations (discrete) . 97

14 User Interface Class to LOLA 99

14.1 Algorithm (planealg) . 99

14.2 Algorithm (lgraphalg) . 105

14.3 Algorithm (gaugealg) . 109

15 LOLA Error Messages 111

Chapter 1

Introduction

Finding \good" locations for facilities becomes more and more important in modern industry.

The selection of optimized sites is essential for the e�cient realization of technical methods.

Examples can be found in microelectronics, the location of machines in industrial plants,

the location of warehouses or depots, the location of emergency facilities or of undesireable

facilities such as incinerators, etc.

The software library LOLA is designed to solve location problems and to suggest an

optimized site for the speci�ed problem. LOLA provides a graphical user interface that

allows its simple application in industrial projects as well as for demonstrations in high

school and university teaching. Furthermore a programming interface allows the use of the

program library of LOLA for the implementation of extended routines to solve individual

location problems.

In this library, e�cient algorithms are implemented to handle various types of location

models. A part of the algorithms is known from the literature, whereas others are (and

will be) results of current research. Most of the algorithms are based on theoretic results

from graph theory, computational geometry and combinatorial optimization.

A location problem usually includes a set of existing facilities Exi, i = 1; : : : ;M , which may

be situated for example in the plane or on a road network. The objective is to �nd one (or

several) new facilities X, such that a given cost function, as for example the total travel

expense, is minimized. For this purpose a weight wi, i = 1; : : : ;M can be associated with

each existing facility Exi representing for example the demand of facility Exi. The most

common objectives are to solve either the Median problem or the Center problem, i.e. to

look for a new location that minimizes either the average travel cost or the maximum travel

cost.

For a detailed survey about location theory see e.g. Love et al. 19881, Francis et al. 19922

1R.F. Love, J.G. Morris and G.O. Wesolowsky. Facilities Location: Models & Methods. North Holland,

New York, 1988.
2R.L. Francis, F. Leon, J. McGinnis and J.A. White. Facility Layout and Location: An Analytical

Approach, 2nd ed. Prentice-Hall 1992.

1

2 CHAPTER 1. INTRODUCTION

or Hamacher 19953.

In LOLA a classi�cation scheme for location problems is used. It has been developed by

Hamacher and Nickel 4 and is described in Chapter 6. The graphical user interface (GUI)

of LOLA, which is also based on this classi�cation scheme, provides a detailed help manual

to guide the user to the appropriate solution of his/her problem.

The development of LOLA is part of a larger project in location theory supported by

the German Research Council (DFG) and therefore is still in process. Whereas in this

version 2.0 planar location problems as described in Hamacher 19953 and network location

problems as well as some discrete problems can be solved, further network and discrete

location problems will be included in an upcoming version of LOLA.

We would like to thank the DFG for the �nancial support that made this project possible.

How to download LOLA

You can download a copy of the source{code and some executable �les from the internet:

URL http://www.mathematik.uni-kl.de/~lola

LOLA{email

For bug{reports or suggestions for improvements and further developments feel free to contact

lola@mathematik.uni-kl.de

3H.W. Hamacher. Mathematische Verfahren der Planaren Standortplanung. Vieweg 1995.
4H.W. Hamacher and S. Nickel: "Classi�cation of Location Models". Technical Report in Wirtschafts-

mathematik No. 19, Universit�at Kaiserslautern, Department of Mathematics, 1996. To appear in Location

Science.

Part I

GettingStartedwithLOLA

3

Chapter 2

AGuidedTour through theLOLA

Frontend

In this chapter we give a detailed introduction to the frontend of LOLA enabling the

solution of di�erent location problems. Nevertheless, this is just a guided tour and not a

complete description. For details, we refer to Chapter 7.

Figure 2.1: LOLA-frontend.

5

6 CHAPTER 2. A GUIDED TOUR THROUGH THE LOLA FRONTEND

2.1 The classical 1-facility median problem

Assume that we want to solve the classical 1-facility-Weber problem, i.e. a planar minisum-

problem with Euclidean distance. In the 5-position-classi�cation scheme described in Chap-

ter 6 this problem can be written as 1=P=:=l2=
P
: We want to locate one new facility (1)

in the plane (P) with no special assumptions (:), using the Euclidean distance as metric

(l2) and minimizing the sum of distances between the existing facilities and the new one

(
P
).

In order to solve a problem of this type, follow steps a) to c).

a) Select the following options in the menue bar:

{ Number : select 1-facility

{ Type : select planar

{ Extras : select none

{ Metric : select l2

{ Objective : select median

The classi�cation string on the LOLA screen should now look like

1=P= � =l2=
X

:

b) Load a �le with location data. The sample �le "sample.loc " can be found in the

directory

.../LOLA/examples

The �le "sample.loc" contains the data of six existing facilities:

begin flocationg [2,1]

15.00 16.00 955 [Koeln]

10.00 36.00 577 [Duesseldorf]

9.00 52.00 540 [Duisburg]

20.00 53.00 620 [Essen]

42.00 58.00 610 [Dortmund]

48.00 90.00 261 [Muenster]

end flocationg

The �rst line implies that we solve a problem in two dimensions with one objective

function. The following lines contain, for every existing facility, the x-coordinate, the

y-coordinate, the weight, and | optional | a symbolic name of the existing facility.

To load the �le click on File in the menu bar and select Load Location . The

resulting LOLA window is given in Figure 2.2.

To generate your own data �les you can use either

2.2. A PLANAR PROBLEM WITH POLYHEDRAL GAUGES 7

Figure 2.2: Loading a location �le.

{ any ASCII-editor to type in the data like in sample.loc according to the data

�le speci�cations, see Section 4.1.

{ or the graphical editor that can be found under Graphical Edit in the File

menu. In this editor the location data can be entered using the mouse.

c) Click on computation , and LOLA will provide a window with the solution Opt, see

Figure 2.3.

If you click on View Results you can see the coordinates and the objective value of

the optimal solution.

2.2 A planar problem with polyhedral gauges

Now suppose that the Euclidean distance is not suitable to model the problem in our �rst

example. Instead of the Euclidean distance function, we can use the option of LOLA to

model distances by polyhedral gauges, a special case of which are block norms (polyhedral

norms). In order to choose this option in the LOLA frontend, follow steps a) and b) below:

a) Choose the options in the menu analogous to the previous example, except for the

metric: Under the option metric we select gauge which leads to the classi�cation

string 1=P=:=gauge=
P

on the frontend.

8 CHAPTER 2. A GUIDED TOUR THROUGH THE LOLA FRONTEND

Figure 2.3: Solution-window for a problem of type 1=P=:=l2=
P
.

b) In the next step we have to load a location �le. In the case of gauge distances,

the location �le must provide more information since a di�erent gauge may be used

to measure the distance to each existing facility. Thus additionally to the facilities

coordinates and weights, a number has to be speci�ed corresponding to the respective

gauges in a gauge-�le. In Figure 2.4, an example of a gauge �le "sample.gau" with

two gauges is given, the �rst of which can be referred to as gauge(0) and the second

as gauge(1). Their unit balls can be seen in Figures 2.5 and 2.6, respectively.

Remark: A (polyhedral) gauge is de�ned by the coordinates of its extreme points

in counterclockwise order. (Note that gauges always must be convex!)

A corresponding location �le "sample gauge.loc" is given in Figure 2.7. Both �les

can be found in the directory

.../LOLA/examples

The solution window for this problem is depicted in Figure 2.8.

2.3 A network-problem

To solve network location problems we need the additional information of the network which

is given in an adjacency matrix which is represented by an adjacency list in LOLA. This

adjacency matrix de�nes the edge length of the network, i.e. the distances between pairs of

2.4. A DISCRETE PROBLEM 9

Figure 2.4: Example- gauge �le with two gauges.

existing facilities, and is added to the location �le. An example is given in Figure 2.9. (The

corresponding location �le "sample.gra" can be found in the directory .../LOLA/examples).

In this �le, the existing facilities are speci�ed and the adjacency matrix of the network G

is represented in a list. Each row of this adjacency list contains the starting node, the end

node and the length of the corresponding edge.

Additionally to the correct choice of the input �le we have to select the option graph in

the Type menu. Furthermore, in the menu Metric , we can choose between the options

d(V,V) and d(V,G) . Selecting d(V,V) restricts the search for an optimal solution to

the nodes of the network (graph) G.

The solution window of the corresponding problem of type 1=G=:=d(V; V)=
P

is given in

Figure 2.10.

2.4 A discrete problem

For the case we want to solve a discrete problem we need more information about the

type of the problem and the locations. At moment LOLA could solve the uncapacitated

facility location problem (UFLP). Therefore we need information about the demand points,

the supply points and the costs for moving from a supply point to demand point. In the

example �le "sample.dis" we see two list of facility and a cost matrix.

Before selecting the input �le we have only to select option discrete in the Type menu.

When pressing Computation we get a new window for choosing the type of the heuristic.

We make three di�erent heuristics and an exact algorithm for this problem available.

10 CHAPTER 2. A GUIDED TOUR THROUGH THE LOLA FRONTEND

Figure 2.5: The unit ball of gauge(0) in the example �le (cf. Figure 2.4).

Figure 2.6: The unit ball of gauge(1) in the example �le (cf. Figure 2.4).

2.4. A DISCRETE PROBLEM 11

Figure 2.7: A location-�le containing the speci�cation (0) and (1) for the respective gauges.

Figure 2.8: Solution window for the problem 1=P=:=gauge=
P

de�ned above.

12 CHAPTER 2. A GUIDED TOUR THROUGH THE LOLA FRONTEND

Figure 2.9: The input �le for a network location problem.

Figure 2.10: Solution window for the network problem 1=G=:=d(V; V)=
P

de�ned above.

Chapter 3

LocationAlgorithmsAvailable in

LOLA

The algorithms available in LOLA are listed in Table 3.1.

Problem Class Description of the Classi�cation Scheme

1=P=:=l1=
P

1-Median problem in the plane with l1-distances.

1=P=R=l1=
P

Restricted 1-Median problem in the plane with l1-distances

and forbidden region inside.

1=P=Rc=l1=
P

Restricted 1-Median problem in the plane with l1-distances

and forbidden region outside.

N=P=:=l1=
P

N -Median problem in the plane with l1-distances.

1=P=:=l1=2�
P

par Bi-objective 1-Median problem in the plane with l1-distances.

1L=P=:=l1=
P

Locating 1 line in the plane wrt. l1-distances and the median

objective function.

1L=P=R = convpolyhed=l1=
P

Locating 1 line in the plane wrt. l1-distances and the

median objective function with convex polyhedral forbidden regions.

1=P=:=l2=
P

1-Median problem in the plane with Euclidean distances.

1=P=R = convpolyhed=l2=
P

Restricted 1-Median problem in the plane with

l2-distances and forbidden region inside.

1=P=B=l2=
P

Restricted 1-Median problem in the plane with

l2-distances and barriers.

N=P=:=l2=
P

N -Median problem in the plane with Euclidean distances.

1L=P=:=l2=
P

Locating 1 line in the plane wrt. Euclidean distances

and the median objective function.

1L=P=wi = 1=l2=
P

Locating 1 line in the plane wrt. Euclidean distances and the

median objective function where all weights are equal to 1.

1L=P=R = convpolyhed=l2=
P

Locating 1 line in the plane wrt. Euclidean distances

and the median objective function with convex

polyhedral forbidden regions.

1=P=:=l2
2
=
P

1-Median problem in the plane with

squared Euclidean distances.

13

14 CHAPTER 3. LOCATION ALGORITHMS AVAILABLE IN LOLA

1=P=R=l2
2
=
P

Restricted 1-Median problem in the plane

with squared Euclidean distances

and forbidden region inside.

1=P=Rc=l2
2
=
P

Restricted 1-Median problem in the plane

with squared Euclidean distances

and forbidden region outside.

N=P=:=l2
2
=
P

N -Median problem in the plane

with squared Euclidean distances.

1=P=:=l2
2
=Q�

P
par Q-objective 1-Median problem in the plane

with squared Euclidean distances.

1=P=:=lp=
P

1-Median problem in the plane with lp-distances (1 < p <1).

1=P=R = convpolyhed=lp=
P

1-Median problem in the plane with lp-distances

with convex polyhedral forbidden regions.

N=P=:=lp=
P

1-Median problem in the plane with lp-distances.

1L=P=:=lp=
P

Locating 1 line in the plane wrt. lp-distances and the

median objective function.

1L=P=R = convpolyhed=lp=
P

Locating 1 line in the plane wrt. lp-distances

and the median objective function with

convex polyhedral forbidden regions.

1=P=:=l1=
P

1-Median problem in the plane with l1-distances.

1=P=R=l1=
P

Restricted 1-Median problem in the plane with l1-distances

and forbidden region inside.

1=P=Rc=l1=
P

Restricted 1-Median problem in the plane with l1-distances

and forbidden region outside.

N=P=:=l1=
P

N -Median problem in the plane with l1-distances.

1=P=:=l1=2�
P

par Bi-objective 1-Median problem in the plane with l1-distances.

1L=P=:=l1=
P

Locating 1 line in the plane wrt. l1-distances

and the median objective function.

1L=P=R = convpolyhed=l1=
P

Locating 1 line in the plane wrt. l1-distances

and the median objective function with

convex polyhedral forbidden regions.

1=P=:=
=
P

1-Median problem in the plane with polyhedral gauges.

1=P=:=
=2 �
P

par Bi-objective 1-Median problem in the plane

with polyhedral gauges.

1L=P=:=
B=
P

Locating 1 line in the plane wrt. block norms

and the median objective function.

1L=P=R = convpolyhed=
B=
P

Locating 1 line in the plane wrt. block norms

and the median objective function with

convex polyhedral forbidden regions.

1=P=:=l1=max 1-center problem in the plane with l1-distances.

1=P=wi = 1=l1=max 1-center problem in the plane with l1-distances where

all weights are equal to 1.

1=P=R = convex=l1=max 1-center problem in the plane with l1-distances with

convex polyhedral forbidden regions.

N=P=:=l1=max N -center problem in the plane with l1-distances.

1L=P=:=l1=max Locating 1 line in the plane wrt. l1-distances and the

15

center objective function.

1=P=:=l2=max 1-center problem in the plane with Euclidean distances.

1=P=R=l2=max Restricted 1-center problem in the plane with

Euclidean distances.

1L=P=:=l2=max Locating 1 line in the plane wrt. Euclidean distances

and the center objective function.

1L=P=:=lp=max Locating 1 line in the plane wrt. lp-distances (1 < p <1)

and the center objective function.

1=P=:=l1=max 1-center problem in the plane with l1-distances.

1=P=wi = 1=l1=max 1-center problem in the plane with l1-distances

where all weights are equal to 1.

1=P=R = convex=l1=max 1-center problem in the plane with l1-distances with

convex polyhedral forbidden regions.

N=P=:=l1=max N -center problem in the plane with l1-distances.

1L=P=:=l1=max Locating 1 line in the plane wrt. l1-distances and the

center objective function.

1=P=:=
=max 1-Center problem in the plane with polyhedral gauges.

1=P=R=
=max 1-Center problem in the plane with polyhedral gauges and forbidden regio

1L=P=:=
B=max Locating 1 line in the plane wrt. block norms and the

center objective function.

1=GD=:=d(V; V)=
P

1-Median problem on a directed graph,

restricted to the nodes of GD.

1=G=:=d(V; V)=
P

1-Median problem on a graph, restricted to the nodes of G.

1=G=:=d(V;G)=
P

1-Median problem on a graph where the optimal

solution may be anywhere on G.

1=T=:=d(V; V)=
P

1-Median problem on a tree T , restricted to the nodes of T .

1=T=:=d(V; T)=
P

1-Median problem on a tree T where the optimal

solution may be anywhere on T .

1=G=:=d(V;G)=2 �
P

par Bi-objective 1-Median problem on a graph G.

1=G=:=d(V;G)=Q �
P

par Q-objective 1-Median problem on a graph G.

1=G=:=d(V; V)=Q�
P

par Q-objective 1-Median problem on a graph G,

restricted to the nodes of G.

1=GD=:=d(V;G)=Q �
P

par Q-objective 1-Median problem on a directed graph GD.

1=GD=:=d(V; V)=Q�
P

par Q-objective 1-Median problem on a directed graph GD,

restricted to the nodes of GD.

1=G=:=d(V;G)=Q �
P

lex Q-objective 1-Median problem on a graph G wrt. the

lexicographic ordering where the optimal solution may be

anywhere on the graph G.

1=G=:=d(V; V)=Q�
P

lex Q-objective 1-Median problem on a graph G,

restricted to the nodes of G wrt. the lexicographic ordering.

1=GD=:=d(V; V)=Q�
P

lex Q-objective 1-Median problem on a directed graph G wrt. the

lexicographic ordering where the optimal solution may be

anywhere on the graph.

1=GD=:=d(V; V)=Q�
P

lex Q-objective 1-Median problem on a directed graph G,

restricted to the nodes of G wrt. the lexicographic ordering.

16 CHAPTER 3. LOCATION ALGORITHMS AVAILABLE IN LOLA

1=GD=:=d(V;G)=max 1-Center problem on a directed graph GD.

1=GD=:=d(V; V)=max 1-Center problem on a directed graph,

restricted to the nodes of GD.

1=G=:=d(V; V)=max 1-Center problem on a graph G, restricted to the nodes of G.

1=G=:=d(V;G)=max 1-Center problem on a graph G where the optimal

solution may be anywhere on G.

1=T=:=d(V; V)=max 1-Center problem on a tree T , restricted to the nodes of T .

1=T=:=d(V; T)=max 1-Center problem on a tree T where the optimal

solution may be anywhere on T .

1=GD=:=d(V; V)=Q�maxpar Q-objective 1-Center problem on a directed graph GD,

restricted to the nodes of GD.

1=GD=:=d(V;G)=Q �maxpar Q-objective 1-Center problem on a directed graph GD where

the optimal solution may be anywhere on the directed graph GD.

1=G=:=d(V; V)=Q�maxlex Q-objective 1-Center problem on a graph G,

restricted to the nodes of G, wrt. the lexicographic ordering.

1=GD=:=d(V; V)=Q�maxlex Q-objective 1-Center problem on a directed graph G,

restricted to the nodes of G, wrt. the lexicographic ordering.

N=G=:=d(V; V)=
P

N -Median problem on a graph G, restricted to the nodes of G.

N=G=:=d(V; V)=max N -Center problem on a graph G, restricted to the nodes of G.

#=D=:=:=: Uncapacitated facility location problem.

Table 3.1: Algorithms of LOLA

Chapter 4

Format of the InputData

The system LOLA reads and interprets problem data for location problems in a descriptive

language especially designed for that task. Furtheron a graphical editor is available to

convert graphical input into that language.

Note that the blanks in the environment speci�cations as given below can not be ommitted!

4.1 File Type loc (containing location data)

begin flocationg [d,Q]

x11 � � � x1d w11 � � �w1Q [symbolic name of facility 1]
...

...
...

xM1 � � � xMd wM1 � � �wMQ [symbolic name of facility M]

end flocationg

xij j-th coordinate of the i-th facility

wij For N-Facilities -problems: For each new facility there must be a weight representing

the importance (demand) of this new facility wrt. the existing facilities. The

value wij represents the weight of the j-th new facility wrt. the i-th existing

facility. Note that in the case that N = 1, i.e. for 1-facility problems, only one

weight wi has to be speci�ed for each existing facility.

For Q-median or Q-center problems: wij represents the weight (demand, impor-

tance) of the existing facility i with respect to the j-th criterion (objective).

d: Dimension of the facilities.

Q: For N-Facilities -Problems: Q is the dimension of the weights, which is in this case

equal to the number N of new locations.

17

18 CHAPTER 4. FORMAT OF THE INPUT DATA

For Q-median or Q-center problems: The number of criteria (objectives) according

to which the problem is to be solved.

As an example consider a planar 1-facility -problem with Median-Objective. Then [d;Q]

is assigned the values [2,1], i.e. we consider a problem in two dimensions and we need one

weight per existing facility in order to �nd the new location. When the graphical editor is

used, the weight is set to 1 by default.

4.2 File Type mat (containing the information about inter-

actions between the new facilities in case of N-Facilities

problems)

begin fmatrixg [N]

w11 � � �w1N

...

wN1 � � �wNN

end fmatrixg

The entries wij represent the interaction (weight) between the new locations. The value

N speci�es the number of new facilities sought. Note that a matrix �le of this type is only

needed for N-Facilities problems where N � 2.

4.3 File Type res (containing the information about restric-

tions)

In case of two dimensional, planar location problems, restrictions (forbidden regions or

barriers for the new locations) can be introduced to the problem using �les of type res:

begin frestrictiong [2]

begin fpolyhedrong [m]

x1 y1 (xi; yi) represent the (two-dimensional) coordinates

x2 y2 of the i-th extreme point of a polyhedron.
... Note that this polyhedron may also be non-convex.

xn yn
end fpolyhedrong

begin fconpolyhedrong [m]

x1 y1 This environment should be alternatively used in case

x2 y2 of convex polyhedral restrictions.
...

xn yn
end fconpolyhedrong

4.3. FILETYPERES (CONTAININGTHEINFORMATIONABOUTRESTRICTIONS)19

begin fcircleg [m]

x y r The point (x; y) speci�es the center-point of the circle and r its radius.

end fcircleg

begin frectangleg [0]

In the case that a restriction is represented by a rectangle,

(x1; y1) speci�es the lower left corner of the rectangle.

x1 y1 �x �y � �x and �y specify the height and width,

respectively, and � is the angle between the

rectangles lower side and the x-axis.

end frectangleg

begin fsegmentg [inf]

x1 y1 A segment is represented by its two end points

x2 y2 (x1; y1) and (x2; y2).
...

xn yn
end fsegmentg

end {restriction}

Remark The coe�cient m indicates the type of restriction:

0: restriction is a forbidden region.

inf: restriction is a barrier.

Example In the following example the input data for a 1-facility problem in the plane

(R2) is given where additionally a circular restriction is taken into account. The location

�le of type loc is given by

begin {location} [2,1]

2 2 1 [OrtA]

5 3 1 [OrtB]

8 3 1 [OrtC]

4 4 1 [OrtD]

end {location}

If we select the option restrictions in the Specials menu and then the restriction type

circle , a possible choice of a restriction-�le is

begin {restriction} [2]

begin {circle} [0]

20 CHAPTER 4. FORMAT OF THE INPUT DATA

4 4 2

end {circle}

end {restriction}

In Figure 4.1 the solution window of a 1-median problem in the plane with the l1 metric

is given using this input data.

Figure 4.1: Solution window of a problem of type 1=P=R = C=l1=
P

with a circular restriction.

Figure 4.2 shows the solution window of the same problem with a di�erent (polyhedral)

restriction.

Note that in the current version of LOLA only the above speci�ed types of restrictions

(i.e. polyhedral or circular sets) can be implemented. Nevertheless it is possible to include

several restrictions of the same type into one restriction �le whereas other types may be

ommitted. The individual restriction regions have to be pairwise disjoint!

4.4 File Type gauge (containing the data of polyhedral gauges)

The input format for �les of the type polygauge consists of a list of points which de�ne

a convex polyhedron containing the origin in its interior. The points in this list must be

sorted in counterclockwise order. Several polyhedral gauges may be collected in a �le of

type polygaugelist.

4.5. FILETYPEGRAPH (CONTAININGTHELOCATIONANDNETWORKINFORMATIONFORNETWO

Figure 4.2: Solution window of a problem of type 1=P=R = P=l1=
P

with a (non-convex) polyhedral

restriction.

begin fpolygaugelistg

begin f polygaugeg

x1 y1
...

xn yn
end fpolygaugeg

...

begin fpolygaugeg

x1 y1
...

xm ym
end fpolygaugeg

end fpolygaugelistg

4.5 File Type graph (containing the location and network in-

formation for network problems)

The input format for network location problems consists of a location-�le and a �le

representing the adjacency matrix of the network (graph) in an adjacencylist. For this

22 CHAPTER 4. FORMAT OF THE INPUT DATA

purpose the format adjlist is provided where the edges of the corresponding network can

be speci�ed using their starting node (source node) and their end node (target node). The

information of the existing facilities and the other nodes of the network is stored using

the location format. Here the nodes can be speci�ed by their (d-dimensional) coordinates

which allows the use of location data from problems of planar type (cf. Section 4.1). They

can be alternatively assigned the attribute NC, i.e. "no coordinates" have to be speci�ed.

Nodes of the network not representing an existing facility can be included in this list by

setting their weights wij equal to zero.

1. Coordinate format of the location �le:

begin flolagraphg

begin flocationg [d,Q]

x11 � � � x1d w11 � � �w1Q [symbolic name of facility 1]
...

...
...

xM1 � � � xMd wM1 � � �wMQ [symbolic name of facility M]

end flocationg

2. No-coordinate format of the location �le:

begin flocationg [d,Q]

NC w11 � � �w1Q [symbolic name of facility 1]
...

...
...

NC wM1 � � �wMQ [symbolic name of facility M]

end flocationg

The adjacency list, which is additionally needed for network location problems, contains

the de�nition and the lengths of the edges. Two di�erent options are available: The

edges can be de�ned by the numbers of the source- and target node, or by the symbolic

names of the respective nodes.

3. Number-format of the adjacency list

begin fadjlistg

source1 target1 ew1

...
...

sourcen targetn ewn

end fadjlistg

ewi: Length of the i-th edge running from

sourcei: number of the starting node of the i-th edge in the location �le to

targeti: number of the end node of the i-th edge in the location �le.

4. Symbolic name-format of the adjacency list

begin fadjlist bynameg

sourcename1 targetname1 ew1

...
...

sourcenamen targetnamen ewn

end fadjlist bynameg

end flolagraphg

4.6. FILETYPEDIS (CONTAININGDATAFORDISCRETELOCATIONPROBLEMS)23

ewi: Length of the i-th edge running from

sourcenamei: symbolic name of the starting node of the i-th edge in the location

�le to

targeti: symbolic name of the end node of the i-th edge in the location �le

Example If we choose the option graph in the Type menu and the option d(V,V)

in the Metric menu, a data �le for the corresponding network location problem of type

1=G=:=d(V; V)=
P

is given in Figure 4.3. An alternative representation of the same data

is shown in Figures 4.5 and 4.6. The solution of this problem is given in Figure 4.4.

Figure 4.3: Input �le for a network location problem - containing the location �le in the coordinate-format

and the adjacency matrix in the name-format.

The same solution we would get with the Input File shown in Figure 4.5.

4.6 File Type dis (containing data for discrete location prob-

lems)

An input format for a discrete location problem consists of three units: demand points,

supply points and costs for moving from a supply point to a demand point. Each of the

m demand points is speci�ed by two coordinates and a weight for demand b. Optionally,

a symbolic name may be given to a demand point.

begin fdiscreteg

begin fdemandg

x1 y1 b1 [symbolic name of demand point 1]
...

...
...

xm ym bm [symbolic name of demand point m]

end fdemandg

Each of the n supply points is speci�ed by two coordinates. However, the number of weights

must be 1 or 2. This is given by a number p in the begin line. If there is only one weight

24 CHAPTER 4. FORMAT OF THE INPUT DATA

Figure 4.4: Solution window for the network location problem of type 1=G=:=d(V; V)=
P

with the input

data given in Figure 4.3.

then this is associated with the �xed costs for building a real supply depot in this location.

The second weight represents the capacity constraints for the supply point.

begin fsupplyg [p]

x1 y1 f1 a1 [symbolic name of supply point 1]
...

...
...

xn yn fn an [symbolic name of supply point n]

end fsupplyg

If no list of supply points is given, then the demand points are at the same time supply

points. Moreover, bi denotes the �xed costs for location i.

The third input data is the m� n matrix for the costs.

begin fcostmatrixg

c11 � � � c1n
...

...
...

cm1 � � � cmn

end fcostmatrixg

end fdiscreteg

4.6. FILETYPEDIS (CONTAININGDATAFORDISCRETELOCATIONPROBLEMS)25

Figure 4.5: The same input �le as in Figure 4.3 in the number-format.

Figure 4.6: The input data of Figure 4.3 in the no-coordinate format.

26 CHAPTER 4. FORMAT OF THE INPUT DATA

4.7 File Type sol (containing solution data)

The information about the solution of a location problem is saved in �les of type sol.

Depending on the type of problem solved, this �le may contain di�erent information.

In the �rst environment class the classi�cation string of the solved problem is given. In

the environment "objective value" the optimal objective value is speci�ed whereas in the

environment "polygonlist" one (or several, as e.g. in case of multicriteria problems) sets of

optimal points/polyhedrons can be given.

begin fclassg

classification

end fclassg begin fresultg

begin fobjective valueg

z z z

end fobjective valueg

begin fpolygonlistg

begin fpolygong

x1 y1
x2 y2
...

xn yn
end fpolygong
...

begin fpolygong

x1 y1
x2 y2
...

xn yn
end fpolygong

end fpolygonlistg

end fresultg

Example In the following the input data and the solution �le are given for a planar location

problem of type 1=P=:=l1=
P
.

begin {location} [2,1]

2 2 1 [OrtA]

5 3 1 [OrtB]

8 3 1 [OrtC]

4 4 1 [OrtD]

end {location}

begin {class}

$1/P/./l_{\infty}/\sum$

end {class}

begin {result}

4.7. FILE TYPE SOL (CONTAINING SOLUTION DATA) 27

begin {objective value}

7

end {objective value}

begin {polygonlist}

begin {polygon}

5 3

4 4

end {polygon}

end {polygonlist}

end {result}

28 CHAPTER 4. FORMAT OF THE INPUT DATA

Chapter 5

Writing aLOLAApplication

In the following we will explain brie
y how the LOLA-libraries can be used directly in a

C++ program without using the LOLA frontend. We describe the components of a C++

program using LOLA to solve a planar minisum problem with squared Euclidean distance

and restrictions.

First we have to include the de�nitions of the routines we need. In our case we need the

routines that handle location �les (read, write) and the algorithms for planar problems.

#include <LOLA/facs_util.h>

#include <LOLA/planealg.h>

Next we have to de�ne some variables to store the objective value, the name of the location

�le (e.g. .../LOLA/examples/prog/test.loc), etc.

main() {

double objval[2];

string normact;

string locfile="test.loc";

string extrafile="test.restr";

facs_util EX;

planealg A;

restrictions Restr;

Now we read the data for the problem.

ifstream file (locfile,ios::in);

EX.ReadLoc(file);

29

30 CHAPTER 5. WRITING A LOLA APPLICATION

All necessary data is available to solve the corresponding unrestriced problem, which is done

in the next step. Also the optimal solution is printed and the solution is shown graphically.

objval[0] = A.l2sqr_sum(EX);

A.WriteOpt();

list<location> AlgSol = A.alg_solution();

normact = "l2sqr";

EX.View(objval[0],normact,AlgSol,Restr);

Next we read in addition a restriction �le and solve the corresponding restricted problem.

ifstream filerestr (extrafile,ios::in);

Restr = ReadRestr(filerestr);

objval[1] = A.l2sqr_sum(EX,Restr);

A.WriteOpt();

Finally, we show again the data, the restriction and the solution graphically in a window.

AlgSol = A.alg_solution();

EX.View(objval[1],normact,AlgSol,Restr);

The resulting complete C++ �le given in the following can be compiled after LOLA is

installed.

#include <LOLA/facs_util.h>

#include <LOLA/planealg.h>

main() {

double objval[2];

string normact;

string locfile="test.loc";

string extrafile="test.restr";

facs_util EX;

planealg A;

restrictions Restr;

/***

* read location-file *

31

**/

ifstream file (locfile,ios::in);

EX.ReadLoc(file);

/***

* solve problem 1/P/./l2**2/sum *

**/

objval[0] = A.l2sqr_sum(EX);

A.WriteOpt();

list<location> AlgSol = A.alg_solution();

normact = "l2sqr";

EX.View(objval[0],normact,AlgSol,Restr);

/***

* read restriction-file *

**/

ifstream filerestr (extrafile,ios::in);

Restr = ReadRestr(filerestr);

/***

* solve problem 1/P/R/l2**2/sum *

**/

objval[1] = A.l2sqr_sum(EX,Restr);

A.WriteOpt();

/***

* Output in a LEDA-Window *

**/

AlgSol = A.alg_solution();

EX.View(objval[1],normact,AlgSol,Restr);

}

The �le "test.cpp" containing this C++ code can be found in the directory

:::=LOLA=examples=prog, where also a make�le is provided.

At the end of this section we show how some of the C++ methods used above are de�ned.

double planealg::l2sqr_sum(facilities& EX)

{

double result;

32 CHAPTER 5. WRITING A LOLA APPLICATION

result = EX.l2sqr_sum();

solution = EX.alg_solution();

return result;

}

double planealg::l2sqr_sum(facilities& EX, restrictions& R)

{

double result;

result = R.l2sqr_sum(EX);

solution = R.alg_solution();

return result;

}

Chapter 6

AClassi�cationScheme forLocation

Problems

In this chapter we describe the classi�cation scheme for location problems used in the

frontend of LOLA. A detailed description of this scheme can be found in Hamacher and

Nickel 1.

The classi�cation scheme has �ve positions:

Pos1=Pos2=Pos3=Pos4=Pos5 :

The meaning of each position is described in the following.

Pos1 This position contains information about the number and the type of the new facilities.

Pos2 The type of the location problem with respect to the decision space. This entry

should e.g. di�erentiate between continuous, network and discrete problems.

Pos3 In this position is room for describing particularities of the speci�c location problem.

For example, information about the feasible solutions or about capacity restrictions

can be included in this position.

Pos4 This position is devoted to the relation of new and existing facilities. This relation

may be expressed by some distance function or simply by assigned costs.

Pos5 The last position contains a description of the objective function.

If we do not make any special assumptions in a position this is indicated by =:=. For

example, =:= in Position 5 means that we consider any objective function and =:= in Position

3 means that the standard assumptions for the problem described in the remaining four

positions hold. For example in planar location problems =:= in Position 3 implies e.g. that

1H.W. Hamacher and S. Nickel: "Classi�cation of Location Models". Technical Report in Wirtschafts-

mathematik No. 19, Universit�at Kaiserslautern, Department of Mathematics, 1996. To appear in Location

Science.

33

34 CHAPTER 6. A CLASSIFICATION SCHEME FOR LOCATION PROBLEMS

we have (as usual) positive weights for the existing facilities. In general we also assume by

default that the objective function is to be minimized.

The following table gives an overview about the usage of the classi�cation scheme.

Position Meaning Usage (Examples)

1 number of new facilities

2 type of problem

P planar location problem

D discrete location problem

G location problem on a network

3 specials
wm = 1 all weights are equal

R or R a forbidden region

4 type of distance function

l1 Manhattan metric

 a gauge

d(V; V) node to node distance

d(V;G) node to points of graph distance

5 type of objective function

P
Median problem

max Center problem

Q�
P

Multicriteria (Pareto) median problem

Note that, due to font limitations, in the LOLA frontend some symbols may not look

exactly like they do in this manual.

A list of possible symbols used in each position of the classi�cation scheme is given in the

following table.

Position 1 Position 2 Position 3 Position 4 Position 5

n 2 f1; : : : ; Ng IRd R lp
P

l P F
 max

p H B
pol CD

A G wm = 1
mix

R

d

C GD wm 6= 0 k � k
R

d1

R

d2

R T wm : distribution dHaus Q�
P

par

T D wm : RV dinhom Q�
P

lex

G wm : f(�) d(V;V) Q�
P

MO

] mc d(V;G) Q� (
P
;max)par

];] alloc d(V;T)
P

comp

cap d(G;V)
P

uncov

bdg d(T ;V)
P

cov+
P

uncov

dmax d(G;G)
P

cov

price d(T ;T) QAP

queue
P

ordP
prob

maxprobP
hub

' : property

Chapter 7

TheComponents of LOLA

7.1 GUI { Graphical User Interface

The GUI is based on the 5{position classi�cation scheme for facility location problems

introduced in Chapter 6 to easily specify the type of problem which is going to be solved

by LOLA.

If TCL/TK is available on your system, calling LOLA creates the window depicted in

Figure 2.1.

According to the classi�cation scheme, the menu of the GUI contains buttons for

Number to select the number of new facilities - in case of N-facility problems with the

Insert-number-window as shown in Figure 7.1.

Figure 7.1: Insert-number-window

Type to select the basic type (P,G,D,T) of the problem.

� P: planar problems

� G: graph problems

� D: discrete problems

� T: tree problems

35

36 CHAPTER 7. THE COMPONENTS OF LOLA

Specials to select special assumptions for the set of solutions, which may be

equal weights In case of equal weights, faster procedures are available for some

types of location problems.

restrictions With the option outside we can choose whether the forbidden zone is

inside or outside the given restrictions. The restrictions can be:

polyhedron The restriction �le must describe a (possibly non-convex) polyhe-

dron.

conpolyhedron The restriction �le must describe a convex polyhedron.

circle The restriction �le must describe a circle.

rectangle The restriction �le must describe a rectangle.

all The restriction �le must describe one or more of the above four possibilities

in arbitrary order and number.

barriers Not implemented yet!

none Default possibility : no restrictions in the problem

Metric to select the distance function. The options are

l1 The l1-norm is chosen.

l2 The l2-norm is chosen.

l2**2 The l2
2
-norm is chosen.

linf The l1-norm is chosen.

lp The lp-norm is chosen, where p can be selected in Options under Preferences .

gauge The distance measure is a self-created gauge.

block The distance measure is a block norm.

For Graph and Tree-algorithms we have the options

d(V,V) The optimal points are searched only on nodes.

d(V,G) The optimal points are searched on the entire graph.

d(V,T) The optimal points are searched on the entire graph which is a tree.

Objective to select the type of objective function. The options are

median if the sum of (weighted) distances should be minimized.

center if the maximum (weighted) distance should be minimized.

Q-median if the sum over all distances should be minimized with respect to more

than one criterion (i.e. the dimension of the weights is bigger than 1).

Q-center if the maximum (weighted) distance should be minimized with respect to

more than one criterion (i.e. the dimension of the weights is bigger than 1).

7.1. GUI { GRAPHICAL USER INTERFACE 37

Furthermore the GUI contains

File � to select �les providing data for given problems, e.g. Load Location ,

� to view this data, e.g. View Location (Remark: This option is not to edit a

�le) or

� to create new data �les, e.g. Graphical Edit and Create Example ,

Help to call the online help{browser,

Options to set general preferences on the maximum number of iterations, default metric

for lp or other problem dependent settings.

The solution process of the classi�ed problems can be started by clicking on the button

Computation .

Figure 7.2: Solution window with a non-convex polyhedral restriction

A solution window (e.g. as shown Figure 7.2) could contain the following options:

Save Results to save the current solution,

View Results to view the results in numeric format,

38 CHAPTER 7. THE COMPONENTS OF LOLA

Refresh to redraw the solution window,

Close to close the window.

Solution windows for planar problems additionally contain the buttons

Convex Hull to draw, respectively remove the convex hull of the set of existing facilities,

Weights to show, respectively hide the weights of the existing facilities,

View Gauge to view the unit ball of a special gauge (appears only if the metric is set

to gauge or block).

In solution windows for network problems the following buttons are available.

Node Weights to show, respectively hide the weights of the edges of the network,

Edge Weights to show, respectively hide the weights of the nodes of the network.

For discrete problems the following buttons are additionally available in the solution window.

Fix Costs to show, respectively hide the �x costs for the supply points,

Weights to show, respectively hide the weights of the demand points,

View Cost Matrix to view the cost matrix (advisable only for small problems).

7.2 Text Based Version of LOLA

All algorithms of LOLA can also be adressed using command-line options in the text based

mode. TCL/TK is not needed for the text-based mode. The necessary input to solve a

location problem can be given. Upon invocation LOLA returns the solution in text or

graphical format, however the latter can be completely suppressed, rendering LOLA capable

of operating text-only. This mode of operation is well suited to perform automated or

repeated tasks.

The text-based mode is automatically entered if command-line options are detected and it

is the only available mode if LOLA has been con�gured with --withtcltk=no. Figure 7.3

shows the available options.

The single-hyphen options detail which task LOLA is to perform, whereas --output

speci�es how to present the solution. The option --output allows a comma-seperated list

of arguments, which are parsed from left to right:

7.2. TEXT BASED VERSION OF LOLA 39

lola-a<algorithm>[-l|-r|-g|-d|-m<file>][-p<n>][-n<n>][--output=<arguments>]

Options:

-a : the algorithm, which is to be performed on the data (see below)

-l : <file> contains the existing facilities

-r : <file> contains restrictions

-g : <file> contains a (directed or undirected) graph

-d : <file> contains polygonal gauge definitions

-m : <file> contains a cost matrix for n-facility problems

-p : <n> is the exponent for an lp-norm

-n : <n> is the number of new facilities for problems on graphs

--output:

this option takes a comma-seperated list of arguments:

[no]windowed : [dont] present the solution graphically

[file=]<file>: write solution as text into <file>

only the rightmost argument of each type takes effect

Figure 7.3: Command line options of the text-based version of LOLA

no --output The solution is presented graphically in a

window and text-based on standard output.

--output=prob1.sol The solution is saved in the �le prob1.sol

--output=nowindowed No windows pop up { this enforces a

text-only operation

--output=file1,file=windowed The solution is saved into the �le windowed,

since the second argument supercedes the

�rst. A solution window is generated.

40 CHAPTER 7. THE COMPONENTS OF LOLA

-a <algorithm> -l -m -r -p -g -d -n

l1 max, l2 max, linf max, X

l1 v1 max, linf v1 max, l2sqr qsum X

l1 sum, l2 sum, l2sqr sum, linf sum X

l1 2sum, linf 2sum X

lp sum X O X

in l1 sum, out l1 sum, in l2sqr sum, X X

out l2sqr sum, in linf sum, X X

out linf sum, in convPoly v1 l2 max, X X

in convex linf max, in convex l1 max X X

barr l2 sum X X

N l1 sum v1, N l2sqr sum, N l2 sum v1, X X

N linf sum v1, N l1 max, N linf max X X

dir median, undir median, X

abs undir median X

abs tree median, abs undir center, X

abs dir center,loc tree center, X

abs tree center,loc tree median, X

loc dir center,loc undir center X

N median cplex, N median partitioning, X X

N median exchange, N median greedy, X X

N center partitioning, N center greedy X X

medPareto, loc medPareto, loc cenPareto, X

dir medPareto, dir locmedPareto, X

dir loc cenPareto, dir cenPareto X

medLexi, loc medLexi, loc cenLexi, X

dir medLexi, dir loc medLexi, X

dir loc cenLexi X

gauge median, bi crit gauge median X X

gauge center X X

L l1 sum M3, L linf sum M3, X

L l2 sum M3, L l2 sum M2logM, X

L l2 sum M2, X

L lp sum M3, L lp max M4 X X

L l1 max M4, L linf max M4, X

L l2 max M4, L l2 max MlogM, X

L l2 max M2logM, X

L block sum M3, L block max M3 X X

L RkonvPoly l2 sum, L RkonvPoly l1 sum, X X

L RkonvPoly lp sum, X X X

L RkonvPoly linf sum, X X

L RkonvPoly block sum X X X

Table 7.1: Feasible combinations of command-line options

7.2. TEXT BASED VERSION OF LOLA 41

argument of -a problem class LOLA method

l1 sum 1=P=:=l1=
P

planealg::l1 sum

in l1 sum 1=P=R=l1=
P

planealg::l1 sum

out l1 sum 1=P=Rc=l1=
P

planealg::l1 sum

N l1 sum v1 N=P=:=l1=
P

planealg::N l1 sum

l1 2sum 1=P=:=l1=2�
P

planealg::l1 2sum

L l1 sum M3 1L=P=:=l1=
P

planealg::L l1 sum M3

L RkonvPoly l1 sum 1L=P=R = convpolyhed=l1=
P

planealg::L RkonvPoly l1 sum

l2 sum 1=P=:=l2=
P

planealg::l2 sum

barr l2 sum 1=P=B=l2=
P

planealg::l2 sum

N l2 sum v1 N=P=:=l2=
P

planealg::N l2 sum v1

L l2 sum M2logM 1L=P=:=l2=
P

planealg::L l2 sum M2logM

L l2 sum M3 planealg::L l2 sum M3

L l2 sum M2 1L=P=wi = 1=l2=
P

planealg::L l2 sum M2

L RkonvPoly l2 sum 1L=P=R = convpolyhed=l2=
P

planealg::L RkonvPoly l2 sum

l2sqr sum 1=P=:=l2
2
=
P

planealg::l2sqr sum

in l2sqr sum 1=P=R=l2
2
=
P

planealg::l2sqr sum

out l2sqr sum 1=P=Rc=l2
2
=
P

planealg::l2sqr sum

N l2sqr sum N=P=:=l2
2
=
P

planealg::N l2sqr sum

l2sqr qsum 1=P=:=l2
2
=Q�

P
planealg::l2sqr qsum

lp sum 1=P=:=lp=
P

planealg::lp sum

lp sum 1=P=R = convpolyhed=lp=
P

planealg::lp sum

N lp sum v1 N=P=:=lp=
P

planealg::N lp sum v1

L lp sum M3 1L=P=:=lp=
P

planealg::L lp sum M3

L RkonvPoly lp sum 1L=P=R = convpolyhed=lp=
P

planealg::L RkonvPoly lp sum

linf sum 1=P=:=l1=
P

planealg::linf sum

in linf sum 1=P=R=l1=
P

planealg::linf sum

out linf sum 1=P=Rc=l1=
P

planealg::linf sum

N linf sum v1 N=P=:=l1=
P

planealg::N linf sum

linf 2sum 1=P=:=l1=2�
P

planealg::linf 2sum

L linf sum M3 1L=P=:=l1=
P

planealg::L linf sum M3

L RkonvPoly linf sum 1L=P=R = convpolyhed=l1=
P

planealg::L RkonvPoly linf sum

gauge median 1=P=:=
=
P

gaugealg::sum

bi crit gauge median 1=P=:=
=2 �
P

par gaugealg::bi crit sum

L block sum M3 1L=P=:=
B=
P

gaugealg::L block sum M3

L RkonvPoly block sum 1L=P=R = convpolyhed=
B=
P

gaugealg::L RkonvPoly block sum

l1 max 1=P=:=l1=max planealg::l1 max

l1 v1 max 1=P=wi = 1=l1=max planealg::l1 v1 max

in convex l1 max 1=P=R = convex=l1=max planealg::l1 max

N l1 max N=P=:=l1=max planealg::N l1 max

L l1 max M4 1L=P=:=l1=max planealg::L l1 max M4

l2 max 1=P=:=l2=max planealg::elzhearn

in l2 max 1=P=R=l2=max planealg::l2 max

L l2 max M4 1L=P=:=l2=max planealg::L l2 max M4

L l2 max MlogM 1L=P=:=l2=max planealg::L l2 max MlogM

L l2 max M2logM 1L=P=:=l2=max planealg::L l2 max M2logM

42 CHAPTER 7. THE COMPONENTS OF LOLA

L lp max M4 1L=P=:=lp=max planealg::L lp max M4

linf max 1=P=:=l1=max planealg::linf max

linf v1 max 1=P=vi = 1=l1=max planealg::linf v1 max

in convex linf max 1=P=R = convex=l1=max planealg::linf max

N linf max N=P=:=l1=max planealg::N linf max

L linf max M4 1L=P=:=l1=max planealg::L linf max M4

gauge center 1=P=:=
=max gaugealg::max

L block max M3 1L=P=:=
B=max gaugealg::L block max M3

Table 7.2: Planar algorithms of text-based LOLA

argument of -a problem class LOLA method

dir median 1=GD=:=d(V; V)=
P

lgraphalg::median

undir median 1=G=:=d(V; V)=
P

lgraphalg::median

abs undir median 1=G=:=d(V;G)=
P

lgraphalg::abs median

loc tree median 1=T=:=d(V; V)=
P

lgraphalg::loc tree median

abs tree median 1=T=:=d(V; T)=
P

lgraphalg::abs tree median

medPareto 1=G=:=d(V;G)=2 �
P
�par lgraphalg::medPareto bi

1=G=:=d(V;G)=Q �
P
�par lgraphalg::medPareto Q

loc medPareto 1=G=:=d(V; V)=Q�
P
�par lgraphalg::loc medPareto

dir medPareto 1=GD=:=d(V;G)=Q �
P
�par lgraphalg::medPareto

dir loc medPareto 1=GD=:=d(V; V)=Q�
P
�par lgraphalg::loc medPareto

medLexi 1=G=:=d(V;G)=Q �
P
�lex lgraphalg::medLexi

loc medLexi 1=G=:=d(V; V)=Q�
P
�lex lgraphalg::loc medLexi

dir medLexi 1=G=:=d(V;G)=Q �
P
�lex lgraphalg::medLexi

dir loc medLexi 1=G=:=d(V; V)=Q�
P
�lex lgraphalg::loc medLexi

abs dir center 1=GD=:=d(V;G)=max lgraphalg::abs center

loc dir center 1=GD=:=d(V; V)=max lgraphalg::center

loc undir center 1=G=:=d(V; V)=max lgraphalg::center

abs undir center 1=G=:=d(V;G)=max lgraphalg::abs center

loc tree center 1=T=:=d(V; V)=max lgraphalg::loc tree center

abs tree center 1=T=:=d(V; T)=max lgraphalg::abs tree center

loc cenPareto 1=G=:=d(V; V)=max lgraphalg::loc cenPareto

dir loc cenPareto 1=GD=:=d(V; V)=max lgraphalg::loc cenPareto

dir cenPareto 1=GD=:=d(V;G)=max lgraphalg::cenPareto

loc cenLexi 1=G=:=d(V; V)=Q�max�lex lgraphalg::loc cenLexi

dir loc cenLexi 1=G=:=d(V; V)=Q�max�lex lgraphalg::loc medLexi

N median cplex N=G=:=d(V; V)=
P

lgraphalg::N median cplex

N median partitioning N=G=:=d(V; V)=
P

lgraphalg::N median partitioning

N median exchange N=G=:=d(V; V)=
P

lgraphalg::N median exchange

N median greedy N=G=:=d(V; V)=
P

lgraphalg::N median greedy

N center partitioning N=G=:=d(V; V)=max lgraphalg::N center partitioning

7.3. GRAPHICAL EDITOR 43

N center greedy N=G=:=d(V; V)=max lgraphalg::N center greedy

Table 7.3: Graph algorithms of text-based LOLA

Each algorithm of LOLA has been assigned a short, descriptive name which is the argument

to the -a option. The choice of an algorithm determines the type of input �les needed for

the solution of the location problem. Table 7.1 on page 40 lists all feasible algorithm/data

combinations, where "X" means mandatory and "O" means optional. Tables 7.2 and 7.3

show which class of location problems is solved by each algorithm and which LOLA-class

method is used.

Examples A command could be

lola -lmydata.loc -al1 sum for a 1-location problem which has to be solved with respect to

the l1 norm and as a median problem.

or lola -lmydata2.loc -aN l1 max -mmat.1 for a N-location problem which has to be solved

with respect to the l1 norm and as a center problem.

7.3 Graphical Editor

This graphical editor enables the user to generate input for LOLA. The user can use the

mouse to create a problem �le for a location or a network problem. It will create a location

�le, a graph �le, a gauge �le or a restriction �le in the correct input format. The menubar

allows the user to choose File , Options or Help .

7.3.1 File

Under the File menu the following options are available.

New to clear the window.

Load to load a location or a restriction �le (must have correct input format).

Load Interactionmatrix to load a matrix �le for an N -location problem.

Save Location to save the coordinates and weights of locations.

Save Graph to save the coordinates and weights of nodes and edges.

Save Restriction to save the coordinates of restrictions.

Save Interactionmatrix to save a matrix �le (available for number > 1).

44 CHAPTER 7. THE COMPONENTS OF LOLA

Print to print the input as a postscript.

Quit to quit the Grapheditor and go back to LOLA.

7.3.2 Options

NewMax to change the xmax and ymax for the input window (default value is 50 and

integer).

Draw Hull to draw the convex hull for all locations.

Number to insert the number of new locations. The user is able to insert the

interdependence-matrix (default value is 1).

Locations

� clicking on the left mouse button de�nes an existing facility at the actual position.

� with pressed Shift-Key, clicking on the left mouse button on an existing point

gives a dialog to change the weight of this point (default value is 1).

� with pressed Control-Key, clicking on the left mouse button on an existing point

deletes this point.

� clicking on the right mouse button and moving the mouse moves the point until

the mouse button is released.

� with pressed Shift-Key, clicking on the right mouse button on an existing point

gives a dialog to insert a string as a description for this location.

Restrictions choose outside and the forbidden region is outside the restriction, otherwise

the forbidden region is inside (default) and then choose one of the following restrictions.

Polyhedron

� clicking on the left mouse button de�nes a point of the polyhedron.

� double clicking on the left mouse button de�nes the last point of this polyhedron.

� with pressed Control-Key, clicking on the left mouse button on an existing point

deletes all polyhedra.

� clicking on the right mouse button and moving the mouse moves the polyhedron

until the mouse button is released.

Convex Polyhedron

� clicking on the left mouse button de�nes a point of the polyhedron.

� double clicking on the left mouse button de�nes the last point of this convex

polyhedron and creates a convex polyhedron.

� with pressed Control-Key, clicking on the left mouse button on an existing point

deletes all convex polyhedra.

Circle

� clicking on the left mouse button de�nes the middle- point of the circle.

7.3. GRAPHICAL EDITOR 45

� with pressed Shift-Key, clicking on the left mouse button and moving the mouse

creates the circle and de�nes the radius if the mouse button is released.

� with pressed Control-Key, clicking on the left mouse button on an existing

middlepoint deletes the circle.

� clicking on the right mouse button and moving the mouse moves the circle until

the mouse button is released.

Rectangle

� clicking on the left mouse button de�nes the point on the left bottom of the

rectangle.

� with pressed Shift-Key, clicking on the left mouse button and moving the mouse

creates the rectangle and de�nes the sides a and b. If the mouse button is released

then an angle � can be inserted to rotate the rectangle (-90 < � <90).

� with pressed Control-Key, clicking on the left mouse button on an existing point

deletes the rectangle.

� clicking on the right mouse button and moving the mouse moves the rectangle

until the mouse button is released.

Gauge to choose the maximal extension of the gauge and to create gauges with the

buttons:

� Save Gauge to save single gauge in a �le.

� Show/Hide Unit Ball to make the unit ball of the gauge (in)visible.

� Clear to clear the input window.

� Append to Gauge-List to append the actual gauge to a polygauge list (if no

such list exists, a new one is opened).

� Save Gauge-List to save the whole polygauge list in a �le.

� Clear Gauge-List to delete the existing polygauge list.

� Symmetr/Unsymmetr to create symmetrical or unsymmetrical polygauges (de-

fault is symmetrical: Only one of two symmetrical extreme points of the unit

ball has to be added, the other one is added automatically).

� Refresh to refresh the input window.

� Close to close the input window.

Undirected Graph to choose whether the graph is a directed one or an undirected one.

� to draw an edge click with the middle mouse button (assuming the mouse has

three buttons) on one location and release the button on another location.

� in case the mouse has two buttons only, the user can use the Alt-Key together

with the left mouse button to draw edges.

� to insert an edge-weight press the Shift-Key and click on the left mouse button.

� to delete an edge press the Control-Key and click on the left mouse button.

In the bottom appear the actual coordinates of the mouseposition and the actual insert

Mode.

46 CHAPTER 7. THE COMPONENTS OF LOLA

7.4 Other Software Used by LOLA

Tools and utilities which are used:

� LEDA,

� TCL/TK,

� CPLEX, or some other type of LP{solver, which is able to process �les in the

MPS-Format

The implementation language is C/C++.

Chapter 8

SystemDesign

The system consists of the three main classes planealg (P), graphalg (G) and discalg (D).

Through these classes all routines in the library can be called and controlled.

8.1 System Structure

FrontEnd
P

G

D

handle planar problems

handle discrete problems

handle graph problems

GUI Programming Interface

(User Level)

planar libs

graph libs

discrete libs

LOLA-Library

libraries of classes to

libraries of classes to

libraries of classes to

Figure 8.1: System Structure. The layers of the user{interfaces and the libraries are shown. The

internal design of the libraries for handling the three types of location problems is speci�ed in the text.

47

48 CHAPTER 8. SYSTEM DESIGN

8.2 Component Structure Type P

cricle,simplex

planealg

facilities

facs_util

restrictions

restr_util

loc_vector

lola_error

location

restr_poly

restr_rect

restr_circle

plane,plane_alg,list,string,stream,
point,vector,segment,line,matrix, segment

point

vector

panel

window
panel

restriction

CPLEX

Figure 8.2: Component Structure P. The arrows stand for \uses/accesses"{relations between the modules.

Components of LOLA are represented by rectangles, components of LEDA are represented by smooth

rectangles, and other components are represented by ellipsoids.

This is the graphical representation of the inner structure of the Type P{libraries of LOLA.

All dependencies and accesses to LEDA and other pre{requisites are shown in this �gure.

Furthermore the coupling of this part of the system is described by the arrows.

8.3 Library Inclusions Type P

Figure 8.3 shows the LOLA classes and the corresponding libraries in which they are located.

The structure provides a separation of unrestricted problems (libLp), restricted problems

(libLpr) and utility functions (libLpu).

If an executable program is statically linked with the LOLA libraries, the library sequence

has to be libLpu, libLpr, libLp.

Example (with GNU's C++):

g++ -o myprog myprog:o -lotherlibs -lLpu -lLpr -lLp -lotherlibs

8.3. LIBRARY INCLUSIONS TYPE P 49

restr_util

planar libs libLp

location

facilities

loc_vector

lola_error

libLpr

restr_rect

restricitons

restriction

restr_poly

restr_circle

libLpu
facs_util

Figure 8.3: Library Structure P. Showing the inclusions of classes to libraries.

This will produce the statically linked executable �le myprog. For more information about

the linker see your GNU C/C++ manual or your system's C/C++ compiler manual.

50 CHAPTER 8. SYSTEM DESIGN

Part II

TheLOLALibraries

51

Chapter 9

UnrestrictedPlanarClasses

9.1 Real-Valued Location-Vectors (Loc Vector)

1. De�nition

An instance of the data type Loc V ector consists of an n-dimensional array of reals.

2. Creation

Loc V ector V (int dim = 0);

creates a dim-dimensional Loc V ector, default dimension is 0.

Loc V ector V (double dim; :::);

creates an instance Loc V ector with the following initialization:

v(dim; arg1; ::; argdim:). All numbers must be doubles.

3. Operations

Loc V ector V + &v1 returns the sum of V and v1.

Loc V ector V � &v1 returns the result of the subtraction of v1 from

V .

Loc V ector& V + = &v1 adds v1 to V .

Loc V ector& V � = &v1 subtracts v1 from V .

Loc V ector& V � = double scalar multiplies V by scalar.

53

54 CHAPTER 9. UNRESTRICTED PLANAR CLASSES

Loc V ector& V + = double scalar adds scalar to V .

Loc V ector& V � = double scalar subtracts scalar from V .

Loc V ector& V = = double scalar divides V by scalar.

Loc V ector V � double scalar returns the product of V and scalar.

Loc V ector V + double scalar returns the sum of V and scalar.

Loc V ector V � double scalar returns the result of the subtraction of scalar

from V .

Loc V ector V = double scalar returns the result of the division of V by scalar.

double V � V2 inner product of V with V2.

double& V [int idx] returns a reference to the idx-th component of

V .

bool V < &v1 returns true if V < v1 for all elements.

bool V <= &v1 returns true if V � v1 for all elements.

bool V > &v1 returns true if V > v1 for all elements.

bool V >= &v1 returns true if V � v1 for all elements.

bool V ! = &v1 returns true if V 6= v1 for all elements.

bool V == &v1 returns true if V = v1 for all elements.

Loc Vector& V = V2 assignment operator.

double V .norm(int p) returns the p-norm (p-metric) of V .

void V .abs() returns the absolute value of V .

int V .size() returns the dimension of V .

bool V .null chk() returns true if one or more components of V

are zero.

Loc V ector V .rotate(double phi) rotates V by phi.

9.2. REAL-VALUED LOCATIONS WITH WEIGHTS (LOCATION) 55

ostream& << (ostream &stream, Loc Vector &v) writes V componentwise.

4. Implementation

All operations on a Loc V ector take time O(size()).

9.2 Real-Valued Locations with weights (location)

1. De�nition

An instance of the data type location consists of two Loc Vectors.

2. Creation

location L(int dim = 2; int wht = 1);

creates a location with a dim-dimensional Loc V ector for the coordinates

and a wht-dimensional Loc V ector for the weights.

location L(double dim; :::);

creates an instance Location with the following initialization:

v(dimension;#weights; coord1; coord2; :::; wht1; wht2; :::).

All numbers must be doubles.

3. Operations

double L.norm(int p) returns the p-norm (p-metric) of L.

int L.dim() returns the dimension of L.

int L.wht dim() returns the number of weights of L.

int L.overall() returns dim() + wht dim() of L.

Loc V ector& L.pos() returns a reference to the coordinate Loc V ector.

Loc V ector& L.wht() returns a reference to the weights Loc V ector.

void L.transform() transforms the coordinates.

Precondition: L:dim() = 2.

56 CHAPTER 9. UNRESTRICTED PLANAR CLASSES

void L.retransform() retransforms the coordinates.

Precondition: L:dim() = 2.

double L.r angle(location &L1) calculates the radian angle between L and L1.

double L.d angle(location &L1) calculates the degree angle between L and L1.

point L.loc2point() transforms location L into type point.

Precondition : dim() = 2.

vector L.loc2vector() transforms location L into type vector (not

Loc V ector).

Precondition : dim() > 0.

segment L.makesegment(locationL1) returns a segment built of location L and L1.

Precondition : L:dim() = 2.

double& L [int i] returns a reference to the i-th coordinate of L.

double& L (int j) returns a reference to the j-th weight of L.

double L � &L1 returns product of L and L1.

location L � double &scalar returns product of L with scalar.

location L = double &scalar returns the result of the division of L by scalar.

location L + &L1 returns location which coordinates are the sum

of of the L1-coordinates and the L-coordinates.

location L � &L1 returns location which coordinates are the dif-

ference of of the L1-coordinates and the L-

coordinates.

int L == &L1 tests for equality in coordinates and weights of

L and L1 (true = 1, false = 0).

int L ! = &L1 tests for inequality in coordinates and weights

of L and L1 (true = 1, false = 0).

location& L.=(location &L1) assignment operator.

9.3 Line (Line)

9.3. LINE (LINE) 57

1. De�nition

An instance of the data type Line consists of three doubles and the line-de�ning locations;

(ax+ by � c = 0).

2. Creation

Line V ;

creates a zero-Line.

Line V (location l1; location l2);

creates a line de�ned by l1 and l2.

3. Operations

Line& V = &L assignment operator.

double& V .m() returns a reference to the slope M of V .

location& V .L1() returns a reference to the �rst de�ning location

L1.

location& V .L2() returns a reference to the �rst de�ning location

L2.

double& V .a() returns a reference to the x-coe�cient of V .

double& V .b() returns a reference to the y-coe�cient of V .

double& V .c() returns a reference to the constant c.

bool V .parallel(Line &L) returns true if the lines V and L are parallel;

otherwise false.

double V .weighted distance(location &L)

calculates the weighted euclidean distance from

L to the line V .

double V .distance(location &L) calculates the unweighted euclidean distance

from L to the line V .

double V .lp distance(location &L; int p)

58 CHAPTER 9. UNRESTRICTED PLANAR CLASSES

calculates the unweighted lp-distance from L to

the line V .

location V .intersection(Line &L) calculates the intersection-location of the two

lines.

bool V < &L returns true if L is parallel to V and lies below

V .

bool V > &L returns true if L is parallel to V and lies above

V .

bool V == &L returns true if the lines are identical.

9.4 1-line-algorithms (lines)

1. De�nition

An instance of the data type lines consists of 1-line algorithms.

2. Median-problems

double V .L l2 sum M3(facilities& facs)

computes the optimum for problem class

1L=P=:=l2=
P

and returns the objective value.

double V .L l1 sum M3(facilities& facs)

computes the optimum for problem class

1L=P=:=l1=
P

and returns the objective value.

double V .L linf sum M3(facilities& facs)

computes the optimum for problem class

1L=P=:=l1=
P

and returns the objective value.

double V .L lp sum M3(facilities& facs; int p)

computes the optimum for problem class

1L=P=:=lp=
P

and returns the objective value.

double V .L l2 sum M2logM(facilities& facs)

computes the optimum for problem class

1L=P=:=l2=
P

and returns the objective value.

9.4. 1-LINE-ALGORITHMS (LINES) 59

double V .L l2 sum M2(facilities& facs)

computes the optimum for problem class

1L=P=vi = 1=l2=
P

and returns the objective

value.

double V .L block sum M3(list<polygauge>&LG; list<int>&Ln; facilities& facs)

computes the optimum for problem class

1L=P=:=lblock=
P

and returns the objective value.

3. Center-problems

double V .L l2 max M4(facilities& facs)

computes the optimum for problem class

1L=P=:=l2=max and returns the objective value.

double V .L l1 max M4(facilities& facs)

computes the optimum for problem class

1L=P=:=l1=max and returns the objective value.

double V .L linf max M4(facilities& facs)

computes the optimum for problem class

1L=P=:=l1=max and returns the objective value.

double V .L l2 max MlogM(facilities& facs)

computes the optimum for problem class

1L=P=vi = 1=l2=max and returns the objective

value.

double V .L l2 max M2logM(facilities& facs)

computes the optimum for problem class

1L=P=:=l2=max and returns the objective value.

double V .L lp max M4(facilities& facs; int p)

computes the optimum for problem class

1L=P=:=lp=max and returns the objective value.

double V .L block max M4(list<polygauge>&LG; list<int>&Ln; facilities& facs)

computes the optimum for problem class

1L=P=:=lblock=max and returns the objective

value.

60 CHAPTER 9. UNRESTRICTED PLANAR CLASSES

4. Useful functions

double V .lp distance 2 line(location &l1; location &l2; location &L; int p)

calculates the lp-distance of L to the line de�ned

by l1 and l2.

double V .objective function l2(location �locs; int start; intN; location&l1; location&l2)

calculates the value of the objective function

with metric l2 for the line de�ned by l1 and l2

and for the locations with start as the beginning

index (�rst element has to be 1) and N as the

index for the �nal element.

void V .max line l2(location&l1; location&l2; location&l3; location&r1; location&r2)

calculates the optimal l2-line de�ned by r1 and

r2 for l1, l2 and l3.

double V .objective function linf(location �locs; int start; intN; location&result1; location&result2)

calculates the value of the objective function

with metric l1 for the line de�ned by l1 and l2

and for the locations with start as the beginning

index (�rst element has to be 1) and N as the

index for the �nal element.

double V .objective function l1(location �locs; int start; intN; location&result1; location&result2)

calculates the value of the objective function

with metric l1 for the line de�ned by l1 and l2

and for the locations with start as the beginning

index (�rst element has to be 1) and N as the

index for the �nal element.

void V .max line l1(location&l1; location&l2; location&l3; location&r1; location&r2)

calculates the optimal l1-line de�ned by r1 and

r2 for l1, l2 and l3.

double V .objective function lp(location �locs; int start; intN; location&result1; location&result2; int p

calculates the value of the objective function

with metric lp for the line de�ned by l1 and l2

and for the locations with start as the beginning

index (�rst element has to be 1) and N as the

index for the �nal element.

void V .max line lp(location&l1; location&l2; location&l3; location&r1; location&r2; int p)

9.5. FACILITIES (FACILITIES) 61

calculates the optimal lp-line de�ned by r1 and

r2 for l1, l2 and l3.

double V .objective function block(location �locs; int start; intN; location&l1; location&l2; Blocknorm

calculates the value of the objective function

with block-metric for the line de�ned by l1

and l2 and for the locations with start as the

beginning index (�rst element has to be 1) and

N as the index for the �nal element.

void V .max line block(location&l1; location&l2; location&l3; location&r1; location&r2; Blocknorm

calculates the optimal block-line de�ned by r1

and r2 for l1, l2 and l3.

int V .geometric duality(location � locs; location &pivot; int M)

sorts all M locations locs with respect to pivot

using geometric duality.

void V .y quicksort(location � tosort; int l; int r; location � old)

sorts the locations tosort from l (usual 0) to

r (usual number of locations minus 1) depen-

dent on the y-coordinate (all locations have to

be 2-dimensional) using a recursive quicksort-

algorithm (old should be the last location).

5. Implementation

The time needed by the algorithms is given in the name of each, e.g. algorithm

L l2 maxM2 logM takes o(M2 logM) time to run.

9.5 Facilities (facilities)

1. De�nition

An instance of the data type facilities consists of a list of locations.

2. Creation

facilities EX; introduces a variable EX of type facilities.

62 CHAPTER 9. UNRESTRICTED PLANAR CLASSES

3. Operations

3.1 Input and Output

string EX.name(int location) provides a name for location.

void EX.set name(int location; string &name)

speci�es a name for location.

void EX.Write(ostream &out) prints all facilities.

void EX.WriteOpt(ostream&out) prints the set of optimal solutions.

3.2 Operations

bool EX.element(location &Loc) returns true if Loc is an element of EX, else

false.

location EX.get element(int idx) returns the idx-element of the EX.

int EX.get idx(location &L) returns the index of L otherwise the total

number of locations.

void EX.remove(location &L) removes L from EX if possible.

void EX.remove(int idx) removes the idx-element of EX if possible.

double EX.max direction value(int i) returns the maximum value of coordinate i

of all locations of EX.

double EX.min direction value(int i) returns the minimum value of coordinate i

of all locations of EX.

double EX.di� value(int i) returns the maximal di�erence between co-

ordinates i of any two locations of EX.

3.3 Algorithms

3.3.1 Median-problems

double EX.l1 sum(int weight; bool erase)

computes the optimum for problem class

1=P=:=l1=
P

and returns the objective value.

9.5. FACILITIES (FACILITIES) 63

double EX.l2sqr sum(int weight; bool erase)

computes the optimum for problem class

1=P=:=l2
2
=
P

and returns the objective value.

double EX.linf sum(int weight; bool erase)

computes the optimum for problem class

1=P=:=l1=
P

and returns the objective value.

double EX.l2 sum(int weight; double epsilon; bool erase)

computes the optimum for problem class

1=P=:=l2=
P

(Weiszfeld-Algorithm) and re-

turns the objective value.

double EX.Weiszfeld(double epsilon) calls l2 sum(0, epsilon, true).

double EX.lp sum(int p; double epsilon; double delta; int iter max; intweight; bool erase)

computes the optimum for problem

class 1=P=:=lp=
P

(Generalized Weiszfeld-

Algorithm) and returns the objective value.

double EX.l2sqr qsum(bool erase)

computes the optimum for problem class

1=P=:=l2
2
=Q �

P
(Q-criterial problem) and

returns the objective value.

double EX.l1 2sum(bool erase)

computes the optimum for problem class

1=P=:=l1=2 �
P

(bi-criterial problem) and

returns the objective value.

double EX.linf 2sum(bool erase)

computes the optimum for problem class

1=P=:=l1=2 �
P

(bi-criterial problem) and

returns the objective value.

double EX.N l1 sum(int N;matrix& w; bool erase)

computes the optimum for problem class

N=P=:=l1=
P

with matrix of interdependen-

cies w and returns the objective value.

double EX.N linf sum(int N;matrix& w; bool erase)

64 CHAPTER 9. UNRESTRICTED PLANAR CLASSES

computes the optimum for problem class

N=P=:=l1=
P

with matrix of interdepen-

dencies w and returns the objective value.

double EX.N l2sqr sum(int N;matrix& w; bool erase)

computes the optimum for problem class

N=P=:=l2
2
=
P

with matrix of interdependen-

cies w and returns the objective value.

double EX.N l2sqr sum(int N;matrix& w; bool erase)

computes the optimum for problem class

N=P=:=lp=
P

(Version 1) and returns the

objective value.

double EX.N l2sqr sum(int N;matrix& w; bool erase)

computes the optimum for problem class

N=P=:=lp=
P

(Version 2) and returns the

objective value.

double EX.fn sum(int n; int p) computes objective value of Xn regarding all

locations of EX.

double EX.fex sum(int p) computes objective value of all solutions

regarding all facilities.

double EX.fnew sum(matrix& w; int p)

computes objective value of Xn's to each

other.

void EX.N l1 sum gen LP(int N;matrix& w; char � lp1; char � lp2)

generates LP for problem classN=P=:=l1=
P
.

void EX.write mps(vector&OBJ;matrix&CONSTRAINTS; vector&RHS; list<char>&EQU; cha

filename)

9.5. FACILITIES (FACILITIES) 65

writes down a given objective func-

tion vector OBJ , matrix of constraints

CONSTRAINTS, right hand side vector

RHS, (in)equality sign list EQU to �le

filename in mps{format. For each row of

CONSTRAINTS there must be a corre-

sponding entry in EQU of the set E(for

equal to), L(for less than or equal to), G(for

greater than or equal to), and N(for neutral).

Remember that the objective row must not

be mentioned in EQU . EQU is only for use

with the CONSTRAINT{rows.

double EX.gauge sum(list<polygauge>& LG; list<int>& Ln; bool erase)

computes the optimum for problem class

1=P=:=
=
P
.

double EX.gauge bi crit sum(list<polygauge>& LG; list<int>& Ln; bool erase)

computes the optimum for problem class

1=P=:=
=2 �
P

par and returns the number

of situations (line segments and cells) the

pareto set consists of.

3.3.2 Center-problems

double EX.linf max(bool erase = true)

computes the optimum for problem class

1=P=:=l1=max and returns the objective

value.

double EX.l1 max(bool erase = true)

computes the optimum for problem class

1=P=:=l1=max and returns the objective

value.

double EX.l1 v1 max(bool erase = true)

computes the optimum for problem class

1=P=wm = 1=l1=max and returns the objec-

tive value.

double EX.l2 max(bool erase = true)

computes the optimum for problem class

1=P=:=l2=max and returns the objective

value.

66 CHAPTER 9. UNRESTRICTED PLANAR CLASSES

double EX.linf v1 max(bool erase = true)

computes the optimum for problem class

1=P=:=l1=max and returns the objective

value.

double EX.elz hearn(bool erase = true)

computes the optimum for Elzinga-Hearn-

Algorithm and returns the objective value.

double EX.N linf max(int N; matrix& W; bool erase = true)

computes the optimum for problem class

N=P=:=l1=max and returns the objective

value.

double EX.N l1 max(int N; matrix& W; bool erase = true)

computes the optimum for problem class

N=P=:=l1=max and returns the objective

value.

double EX.N linf max mps(int N; matrix& W; bool erase = true)

computes the optimum for problem class

N=P=:=l1=max usingmps-�les and CPLEX

and returns the objective value. CPLEX

generates also two �les named "sol1.txt"

and "sol2.txt".

double EX.N l1 max mps(int N; matrix& W; bool erase = true)

computes the optimum for problem class

N=P=:=l1=max using mps-�les and CPLEX

and returns the objective value. CPLEX

generates also two �les named "sol1.txt"

and "sol2.txt".

3.4 Useful Functions

double EX.objective value computation(list<polygauge>&Lg; list<int>&Ln; pointX; int q)

computes the objective value for a gauge

problem.

double EX.objective value computation(list<polygauge>&Lg; list<int>&Ln; pointX; int q)

computes the subgradient value for a gauge

problem.

9.6. FACILITIES-UTILITIES (FACS UTIL) 67

list<segment> EX.all segments computation(list<polygauge>&Lg; list<int>&Ln; point Y; double f X; int q)

computes all segments for all locations for

1-criterial.

list<segment> EX.all segments computation(list<polygauge>&Lg; list<int>&Ln; point Y; double f X; int q)

computes the function values for the grid-

points.

vector EX.niveauline vector computation(list<polygauge>&Lg; list<int>&Ln; pointX; int q)

computes the direction vector for level curve.

list<point> EX.computation of lex solutions(list<polygauge>&Lg; list<int>&Ln; pointX; int q1; int q2; GR

computes the lexicographical solution.

list<location> EX.non trivial case(list<polygauge>&Lg; list<int>&Ln; list<point>&Lex sol 12; list<point>&

computes the pareto solution for a non trivial

case.

9.6 Facilities-utilities (facs util)

1. De�nition

An instance EX of the data type facs util supports the data type facilities. It provides

some useful routines to handle the class facilities.

2. Creation

facs util EX ; creates a list of location EX of type facs util.

3. Operations

3.1 Input and Output

void EX.ReadLoc(ifstream& file) reads all locations from file.

void EX.ReadLoc Res(ifstream& file)reads all locations with results from file.

void EX.ReadLoc(ifstream& file; list<int>& Dist)

68 CHAPTER 9. UNRESTRICTED PLANAR CLASSES

reads all locations from file and returns a list to

associate distance functions.

void EX.ReadRestr(ifstream& file)reads all restrictions from file.

void EX.SaveLoc(ostream& file) saves all locations into file.

void EX.SaveLoc Res(ostream& file; double objval; string normact)

saves all locations and the results of the current

problem into file.

matrix EX.ReadMat(ifstream& file) reads a matrix from file for a multi�facilities�

problem.

void EX.View(double objval; string normact; list<location>&AlgSol; restrictions&Restr)

shows the results and locations of the current

problem.

void EX.View(double objval; string normact; list<location>&AlgSol; restrictions&Restr; list<polygauge>

shows the results and locations of the current

problem.

void EX.View(double objval; string normact; list<location>&AlgSol; restrictions&Restr; list<polygon>&

shows the results and locations of the current

problem.

void EX.View(double objval; string normact; list<location>&AlgSol; restrictions&Restr; list<polygon>&

shows the results and locations of the current

problem.

Chapter 10

RestrictedPlanarClasses

10.1 Restriction (restriction)

1. De�nition

Restriction is one of three restriction-types (restr poly, restr circle or restr rect) and has

the following virtual function for all of them.

2. Creation

restriction R; creates a variable R of type restriction.

3. Operations

int type() returns the type of the restriction

(restr p, restr c or restr r).

bool inout() returns true if the forbidden region

should be inside R, false otherwise.

void in forbid() changes forbidden region to inside.

void out forbid() changes forbidden region to outside.

bool inside(point p) returns true if p lies inside R,

false otherwise.

bool inside(location Loc) returns true if Loc lies inside R,

false otherwise.

bool inside(segment seg) returns true if seg lies inside R,

false otherwise.

69

70 CHAPTER 10. RESTRICTED PLANAR CLASSES

list<point> intersect(ray r) returns R \ r as a list of points.

list<point> intersection(line l) returns R \ l as a list of points.

list<point> intersection(segment s) returns R \ s as a list of points.

list<point> intersection(polygon P) returns R \ P as a list of points.

list<point> intersection(circle C) returns R \ C as a list of points.

list<location> proj l2sqr(location opt) returns the projected locations for the l2
2
Norm.

double proj v1 l2 max(location opt, facilities facs, double z opt)

returns the objective value for the

projected solution in opt for the

problem class 1=P=wm = 1=l2=max.

10.2. POLYGON AS A RESTRICTION (RESTR POLY) 71

Non-virtual functions

bool inside all(restriction� restrict, list<location> opt)

returns true if all locations lie inside

the restriction, false otherwise.

restriction� inside which(list<restriction� > restrict, location loc)

returns restriction where loc lies inside.

restriction� inside which(list<restriction� > restrict, segment seg);

returns restriction where seg lies inside.

restriction� inside which(list<restriction� > restrict, list<location> opt);

returns restriction where all locations

from opt lie inside.

10.2 Polygon as a restriction (restr poly)

1. De�nition

An instance P of the data type restr poly is a simple polygon in the two-dimensional plane

de�ned by the sequence of its vertices. The number of vertices is called the size of P . A

restr poly with empty vertex sequence is called empty.

2. Creation

restr poly P ;

introduces a variable P of type restr poly. P is initialized to the empty

restr poly.

restr poly P (list<point> p);

introduces a variable P of type restr poly. P is initialized to the restr poly

with vertex sequence p.

Precondition: The vertices in p de�ne a simple polygon.

3. Operations

list<point> P .vertices() returns the sequence of vertices of P in coun-

terclockwise ordering.

72 CHAPTER 10. RESTRICTED PLANAR CLASSES

list<segment> P .segments() returns the sequence of bounding segments of

P in counterclockwise ordering.

bool P .convex() returns true if P is convex, false otherwise.

int P .size() returns the size of P .

bool P .empty() returns true if P is empty, false otherwise.

bool P .==(restr poly P1) test for equality of P and P1.

10.3 Circle as a restriction (restr circle)

1. De�nition

An instance C of the data type restr circle is a circle in the two-dimensional plane, i.e. the

set of points having a certain distance r from a given point p. r is called the radius and

p is called the center of C. The restr circle with center (0; 0) and radius 0 is called the

empty restr circle.

2. Creation

restr circle C;

introduces a variable C of type restr circle. C is initialized to the empty

restr circle.

restr circle C(point c; double r);

introduces a variable C of type restr circle. C is initialized to the circle

with center c and radius r.

restr circle C(double x; double y; double r);

introduces a variable C of type restr circle. C is initialized to the circle

with center (x; y) and radius r.

restr circle C(point a; point b; point c);

introduces a variable C of type restr circle. C is initialized to the circle

through points a, b, and c. Precondition: a, b, and c are not collinear.

10.4. RECTANGLE AS A RESTRICTION (RESTR RECT) 73

3. Operations

point C.center() returns the center of C.

double C.radius() returns the radius of C.

double C.distance(point p) returns the distance between C and p (negative

if p inside C).

bool C == D tests for equality of C and D.

10.4 Rectangle as a restriction (restr rect)

1. De�nition

An instance R of the data type restr rect is a simple rectangle in the two-dimensional

plane de�ned by the sequence of its vertices. The number of vertices is called the size of

R. A restr rect with empty vertex sequence is called empty.

2. Creation

restr rect R(point p; double x; double y; double rad);

introduces a variable R of type restr rect. R is initialized to the restr rect

with corner p and sides of length x and y and rotated by rad.

restr rect R(point p; double x; double y);

introduces a variable R of type restr rect. R is initialized to the restr rect

with corner p and sides of length x and y.

restr rect R(point p1; point p2; point p3; point p4);

introduces a variable R of type restr rect. R is initialized to the restr rect

with vertices p1, p2, p3, p4.

restr rect R(point p1; point p2);

introduces a variable R of type restr rect. R is initialized to the restr rect

with opposite vertices p1 and p2.

74 CHAPTER 10. RESTRICTED PLANAR CLASSES

3. Operations

double R.area() returns the area of R.

int R.==(restr rect r1) tests for equality of R and r1.

10.5 Algorithms for Forbidden Regions (restrictions)

1. De�nition

An instance of the data type restrictions consists of the algorithm to solve planar location

problems with restrictions.

2. Creation

restrictions R; creates restrictions R

3. Operations

list<location> R.alg solution() returns the solution for the current problem.

double R.l1 sum(facilities& EX; bool erase)

computes the optimum for problem class

1=P=R=l1=
P

and returns the objective value.

double R.linf sum(facilities& EX; bool erase)

computes the optimum for problem class

1=P=R=l1=
P

and returns the objective value.

double R.l2sqr sum(facilities& EX; bool erase)

computes the optimum for problem class

1=P=R=l2
2
=
P

and returns the objective value.

double R.lp sum(facilities& EX; int p; double epsilon; double delta; int iter max;

bool erase)

computes the optimum for problem class

1=P=R=lp=
P

and returns the objective value.

double R.l2 v1 max(facilities& EX; bool erase)

10.6. POLYGON AS A BARRIER (POLYGON BARRIER) 75

computes the optimum for problem class

1=P=R = convex polyhedron;wm = 1=l1=
P

and returns the objective value.

double R.linf max(facilities& EX; bool erase)

computes the optimum for problem class

1=P=R = convex restriction=l1=
P

and re-

turns the objective value.

double R.l1 max(facilities &EX; bool erase)

computes the optimum for problem class

1=P=R = convex restriction=l1=
P

and returns

the objective value.

double R.L RkonvPoly l2 sum(facilities& EX; bool erase)

computes the optimum for problem class

1L=P=R = convex polyhedron=l2=
P

and re-

turns the objective value.

double R.L RkonvPoly lp sum(facilities& EX; bool erase; int norm)

computes the optimum for problem class

1L=P=R = convex polyhedron=lp=
P

and re-

turns the objective value.

double R.L RkonvPoly lp sum(facilities& EX; bool erase; int norm)

computes the optimum for problem class

1L=P=R = convex polyhedron=l1=
P

and re-

turns the objective value.

double R.L RkonvPoly lp sum(facilities& EX; bool erase; int norm)

computes the optimum for problem class

1L=P=R = convex polyhedron=l1=
P

and re-

turns the objective value.

double R.L RkonvPoly lp sum(facilities& EX; bool erase; int norm)

computes the optimum for problem class

1L=P=R = convex polyhedron=
B=
P

and re-

turns the objective value.

10.6 Polygon as a barrier (polygon barrier)

76 CHAPTER 10. RESTRICTED PLANAR CLASSES

1. De�nition

An instance P of the data type polygon barrier is a simple polygon in the two-dimensional

plane de�ned by the sequence of its vertices. The number of vertices is called the size of

P . A polygon barrier with empty vertex sequence is called empty.

2. Creation

polygon barrier P ;

introduces a variable P of type polygon barrier. P is initialized to the

empty polygon barrier.

polygon barrier P (list<point> Pt);

introduces a variable P of type polygon barrier. P is initialized to the

polygon with vertex sequence Pt.

Precondition: The vertices in Pt de�ne a simple polygon.

3. Operations

list<point> P .vertices() returns the sequence of vertices of P in coun-

terclockwise ordering.

bool P .visible(point&p1 ; point&p2)returns true if p2 is visible from p1 with respect

to P .

10.7 Circle as a barrier (circle barrier)

1. De�nition

An instance C of the data type circle barrier is a circle in the two-dimensional plane,

i.e. the set of points having a certain distance r from a given point p. r is called the radius

and p is called the center of C. The circle barrier with center (0; 0) and radius 0 is called

the empty circle barrier.

2. Creation

circle barrier C;

introduces a variable C of type circle barrier. C is initialized to the

empty circle barrier.

circle barrier C(point p; double r);

10.8. SEGMENT AS A BARRIER (SEGMENT BARRIER) 77

introduces a variable C of type circle barrier. C is initialized to the circle

with center p and radius r.

circle barrier C(double x; double y; double r);

introduces a variable C of type circle barrier. C is initialized to the circle

with center (x; y) and radius r.

circle barrier C(point a; point b; point c);

introduces a variable C of type circle barrier. C is initialized to the circle

through points a, b, and c. Precondition: a, b, and c are not collinear.

3. Operations

point C.center() returns the center of C.

double C.radius() returns the radius of C.

bool C.visible(point p1; point p2) returns true if p2 is visible from p1 with respect

to P .

10.8 Segment as a barrier (segment barrier)

1. De�nition

An instance S of the data type segment barrier is a segemnt in the two-dimensional plane

de�ned by its the points including the segment.

2. Creation

segment barrier S;

introduces a variable S of type segment barrier. S is initialized to the

empty segment barrier.

segment barrier S(point p1; point p2);

introduces a variable S of type segment barrier. S is initialized to the

segment (p1; p2).

78 CHAPTER 10. RESTRICTED PLANAR CLASSES

3. Operations

point S.point1() returns the source point of S.

point S.point2() returns the target point of S.

bool S.visible(point; point) returns true if p2 is visible from p1 with respect

to P .

10.9 Algorithms for Barriers (barrier)

double S.l2 sum(facilities& EX; bool erase; int choose = 1; double percent =

0:1; double accel = 1:0; double init ss = 0:01; double epsilon = 0:001)

computes the optimum for problem class

1=P=(R;1)=l2=
P

and returns the objective

value.

10.10 Restriction-utilities (restr util)

Restriction-utilities provides useful routines to handle restrictions.

double Restr max dir(int i, restrictions Restr)

returns the maximal coordinate in direction

i (i = 0 x-coordinate, i = 1 y-coordinate).

double Restr min dir(int i, restrictions Restr)

returns the minimal coordinate in direction

i (i = 0 x-coordinate, i = 1 y-coordinate).

double Restr di� value(int i, restrictions Restr)

returns the maximal di�erence between

the coordinates in direction i

(i = 0 x-coordinate, i = 1 y-coordinate).

void DrawRestr(window W, restrictions Restr)

draws the restrictions in a window W .

restrictions ReadRestr(ifstream �le)

returns the restrictions given in the

correct format in �le.

10.10. RESTRICTION-UTILITIES (RESTR UTIL) 79

restr poly ReadPoly(ifstream �le)

returns a polygon as a restriction given

in the correct format in �le.

restr circle ReadCirc(ifstream �le)

returns a circle as a restriction given

in the correct format in �le.

restr rect ReadRect(ifstream �le)

returns a rectangle as a restriction given

in the correct format in �le.

80 CHAPTER 10. RESTRICTED PLANAR CLASSES

Chapter 11

PlanarClasseswithGauges

11.1 Polyhedral Gauges (polygauge)

1. De�nition

An instance G of the data type polygauge is a gauge in the two-dimensional plane de�ned

by the sequence of its vertices in counterclockwise order which creates the cones. These

cones are numbered in counterclockwise order. The number of vertices is called the size of

G. See also the Gauge-utilities header (gauge util.h), which provides Load, Save, Create

and View for Gauges.

2. Creation

polygauge G(list<point> pl);

introduces a variableG of type polygauge. G is initialized to the polygauge

with vertex sequence pl.

Precondition: The vertices in pl are given in counterclockwise order and

de�ne a polygauge. The polyhedral belonging to the polygauge must be

convex.

polygauge G;

introduces a variable G of type polygauge. G is initialized to the empty

polygauge.

3. Operations

point G [int c] returns the c-th extreme point of G.

point G.origin() returns the origin G.

81

82 CHAPTER 11. PLANAR CLASSES WITH GAUGES

list<point> G.vertices() returns the vertex sequence ofG for the reference

point origin.

list<point> G.vertices(point r) returns the vertex sequence ofG for the reference

point r.

list<point> G.vertices(location rl) returns the vertex sequence ofG for the reference

location rl.

list<segment> G.segments(point r) returns the sequence of bounding segments of

the cones of G in counterclockwise order for the

reference point r.

list<segment> G.segments(location rl) returns the sequence of bounding segments of

the cones of G in counterclockwise order for the

reference location rl.

list<double> G.alphas() returns the angle sequence of G_

list<point> G.conepoints(point r; int c) returns the extreme points creating the cone c.

list<point> G.conepoints(location rl; int c)

returns the extreme points creating the cone c.

list<segment> G.coneseg(point r; int c) returns the segments creating the cone c.

list<segment> G.coneseg(location rl; int c)

returns the segments creating the cone c.

int G.conetest(point r; int c; point p; bool& unique)

returns 1 if p lies inside the cone c, 0 otherwise;

if p lies on a segment border, unique is false; if

r is equal to p, 0 is returned and unique is false.

int G.conetest(location rl; int c; location l; bool& unique)

returns 1 if l lies inside the cone c, 0 otherwise;

if l lies on a segment border, unique is false; if

rl is equal to l, 0 is returned and unique is false.

int G.inCone(point r; point p; bool& unique)

returns the number of the cone, p lies inside; if

p lies on a segment border, unique is false; if r

is equal p, 0 is returned and unique is false.

11.1. POLYHEDRAL GAUGES (POLYGAUGE) 83

int G.inCone(location rl; location l; bool& unique)

returns the number of the cone, l lies inside; if

l lies on a segment border, unique is false; if rl

is equal to l, 0 is returned and unique is false.

list<point> G.pl inCone(point r; int c; list<point> pl)

returns the list of points pl which lie inside the

cone c, returns the empty list if no point is

inside the cone.

list<location> G.ll inCone(location rl; int c; list<location> ll)

returns the list of locations of ll which lie inside

the cone c, returns the empty list if no location

is inside the cone.

double G.norm(point r; point p) returns the norm for the gauge from point r to

point p.

double G.norm(location rl; location l)

returns the norm for the gauge from location rl

to location l.

list<double> G.lin describe(point r; int c) returns m (in list.head()) and b (in list.tail())

as the linear description (y = m � x+ b) of the

cone c; returns inf (in list.head()) and x (in

list.tail()) if segment is vertical.

list<double> G.lin describe(location rl; int c)

returns m (in list.head()) and b (in list.tail())

as the linear description (y = m � x+ b) of the

cone c, returns inf (in list.head()) and x (in

list.tail()) if segment is vertical.

double G.max dist() returns the maximal euclidean distance from

origin of the gauge G to the extreme points.

point G.maxi(point r; int i) returns the extreme point ofG with the maximal

coordinate, i=0 for x-coord and i=1 for y-coord.

point G.mini(point r; int i) returns the extreme point of G with the minimal

coordinate, i=0 for x-coord and i=1 for y-coord.

point G.maxi(location rl; int i) returns the extreme point ofG with the maximal

coordinate, i=0 for x-coord and i=1 for y-coord.

84 CHAPTER 11. PLANAR CLASSES WITH GAUGES

point G.mini(location rl; int i) returns the extreme point of G with the minimal

coordinate, i=0 for x-coord and i=1 for y-coord.

double G.max di�(int i) returns the di�erence between max i and min ,

i=0 for x-coord and i=1 for y-coord.

polygauge G.dual() returns the dual gauge of G.

polygauge G.rotate(double alpha) returns the gauge created by a rotation of G by

angle alpha.

polygauge G.l1() returns the l1 gauge.

polygauge G.linf() returns the l1 gauge.

polygauge G.unit() returns the gauge with all segments of length 1.

polygauge G.join(polygauge& H) returns the union of gauge G and H.

polygauge G.scale(double scale) returns the gauge with all segments scaled with

scale.

polygauge G.translate(point r) returns the gauge with all segments translated

to r.

bool G.symmetrical() returns true if G is symmetrical, false otherwise.

int G.size() returns the size of G.

bool G.empty() returns true if G is empty, false otherwise.

bool G == H tests for equality of G and H.

bool G ! = H tests for inequality of G and H.

11.2 Mixed Gauges (mixgauge)

1. De�nition

An instance G of the data type mixgauge is a gauge in the two-dimensional plane de�ned

by the sequence of its vertices in counterclockwise order which creates the cones. These

cones are numbered in counterclockwise order. The number of vertices is called the size of

G. See also the Gauge-utilities header (gauge util.h), which provides Load, Save, Create

and View for Gauges.

11.2. MIXED GAUGES (MIXGAUGE) 85

2. Creation

mixgauge G(list<point> pl; list<bool> typ);

introduces a variable G of typemixgauge. G is initialized to the mixgauge

with vertex sequence pl.

Precondition: The vertices in pl are given in counterclockwise order and

de�ne a mixgauge. The polyhedral belonging to the mixgauge must be

convex.

mixgauge G;

introduces a variable G of type mixgauge. G is initialized to the empty

mixgauge.

3. Operations

point G [int c] returns the c-th extreme point of G .

bool G.conetype(int c) returns the type of the cone c.

list<point> G.vertices(point r) returns the vertex sequence ofG for the reference

point r.

list<point> G.vertices(location rl) returns the vertex sequence ofG for the reference

location rl.

list<segment> G.segments(point r) returns the sequence of bounding segments of

the cones of G in counterclockwise order.

list<segment> G.segments(location rl) returns the sequence of bounding segments of

the cones of G in counterclockwise order.

list<double> G.alphas() returns the angle sequence of G .

list<point> G.conepoints(point r; int c) returns the extreme points creating the cone c.

list<point> G.conepoints(location rl; int c)

returns the extreme points creating the cone c.

list<segment> G.coneseg(point r; int c) returns the segments creating the cone c.

list<segment> G.coneseg(location rl; int c)

returns the segments creating the cone c.

86 CHAPTER 11. PLANAR CLASSES WITH GAUGES

int G.conetest(point r; int c; point p; bool& unique)

returns 1 if p lies inside the cone c, 0 otherwise;

if p lies on a segment border, unique is false; if

r is equal to p, 0 is returned and unique is false.

int G.conetest(location rl; int c; location l; bool& unique)

returns 1 if l lies inside the cone c, 0 otherwise;

if l lies on a segment border, unique is false; if

rl is equal to l, 0 is returned and unique is false.

int G.inCone(point r; point p; bool& unique)

returns the number of the cone, p lies inside; if

p lies on a segment border, unique is false; if r

is equal to p, 0 is returned and unique is false.

int G.inCone(location rl; location l; bool& unique)

returns the number of the cone, l lies inside; if

l lies on a segment border, unique is false; if rl

is equal to l, 0 is returned and unique is false.

list<point> G.pl inCone(point r; int c; list<point> pl)

returns the list of points which lie inside the

cone c, returns the empty list if no point is

inside the cone.

list<location> G.ll inCone(location rl; int c; list<location> ll)

returns the list of locations which lie inside the

cone c, returns the empty list if no location is

inside the cone.

double G.norm(point r; point p) returns the norm for the gauge from point r to

point p.

double G.norm(location rl; location l)

returns the norm for the gauge from location rl

to location l.

list<double> G.lin describe(point r; int c)

returns m (in list.head()) and b (in list.tail())

as the linear description (y = m � x+ b) of the

cone c; returns inf (in list.head()) and x (in

list.tail()) if segment is vertical.

11.2. MIXED GAUGES (MIXGAUGE) 87

list<double> G.lin describe(location rl; int c)

returns m (in list.head()) and b (in list.tail())

as the linear description (y = m � x+ b) of the

cone c, returns inf (in list.head()) and x (in

list.tail()) if segment is vertical.

point G.maxi(point r; int i) returns the extreme point with the maximal

coordinate, i=0 for x-coord and i=1 for y-coord.

point G.mini(point r; int i) returns the extreme point with the minimal

coordinate, i=0 for x-coord and i=1 for y-coord.

point G.maxi(location rl; int i) returns the extreme point with the maximal

coordinate, i=0 for x-coord and i=1 for y-coord.

point G.mini(location rl; int i) returns the extreme point with the minimal

coordinate, i=0 for x-coord and i=1 for y-coord.

double G.max di�(int i) returns the di�erence between max i and min i,

i=0 for x-coord and i=1 for y-coord.

mixgauge G.dual() returns the dual gauge of G.

mixgauge G.rotate(double alpha) returns the gauge created by a rotation of G by

angle alpha.

mixgauge G.join(mixgauge& H) returns the union of gauge G and H.

mixgauge G.unit() returns the gauge with all segments of length 1.

mixgauge G.scale(double scale) returns the gauge with all segments scaled with

scale.

bool G.symmetrical() returns true if G is symmetrical, false otherwise.

int G.size() returns the size of G.

bool G.empty() returns true if G is empty, false otherwise.

bool G == H tests for equality of G and H.

bool G ! = H tests for inequality of G and H.

88 CHAPTER 11. PLANAR CLASSES WITH GAUGES

11.3 Gauge-utilities (gauge util)

Gauge-utilities provides useful routines to handle gauges.

list<polygauge> ReadLPGauge(ifstream �le)

returns the list of polygauges.

list<mixgauge> ReadLMGauge(ifstream �le)

returns the list of mixgauges.

list<int> ReadGNumber(ifstream �le)

returns the list of numbers to connect

the locations with their gauges.

Precondition: size of facilities is equal

to size of numbers.

void SaveGauge(ofstream �le, polygauge G)

saves the list of extremalpoints

from polygauge G in �le.

void SaveGauge(ofstream �le, mixgauge M)

saves the list of extremalpoints and

the conetyp from mixgauge M in �le.

void DrawGauge(window W, polygauge G)

draws a polygauge G in a window W .

void DrawGauge(window W, mixgauge M)

draws a mixgauge M in a window W .

void ViewGauge(polygauge G)

opens a window and a panel where

you can choose Load, Save or

Create a polygauge.

void ViewGauge(mixgauge M)

opens a window and a panel where

you can choose Load, Save or

Create a mixgauge.

11.3. GAUGE-UTILITIES (GAUGE UTIL) 89

Input-format for the �les

ReadGauge(�le) begin fpolygaugeg

x1 y1
...

xn yn
end fpolygaugeg

ReadGauge(�le,tl) begin fmixgaugeg

x1 y1 typ1
...

xn yn typn
end fmixgaugeg

ReadLPGauge(�le) begin fpolygaugelistg

begin fpolygaugeg

x1 y1
...

xn yn
end fpolygaugeg
...

begin fpolygaugeg

x1 y1
...

xm ym
end fpolygaugeg

end fpolygaugelistg

ReadLMGauge(�le) begin fmixgaugelistg

begin fmixgaugeg

x1 y1 typ1
...

xn yn typn
end fmixgaugeg
...

begin fmixgaugeg

x1 y1 typ1
...

xm ym typm
end fmixgaugeg

end fmixgaugelistg

ReadGNumber(�le) begin fgaugenumberg

num1

...

numn

end fgaugenumberg

90 CHAPTER 11. PLANAR CLASSES WITH GAUGES

Chapter 12

GraphClasses

12.1 Basic Classes for Graphs (sol typ, edge segment,

node weight in graphsolution.h)

1. De�nition

An instance of the data type sol typ consists of two integers and one double to describe the

solution of non restrictive problems. sol typ is used to denote a location along the edge,

where the integers describe the adjacent nodes and the double is a parameter t 2 [0..1] to

give the position along the edge.

sol typ S; creates an instance of sol typ.

S.source:=i; de�nes the startnode i of edge e.

S.target:=j; de�nes the endnode j of edge e.

S.alpha s:=t; de�nes the point t on edge e.

2. De�nition

An instance of the data type edge segment is derived from the data type sol typ with an

additional double to describe the solution of restrictive problems. edge segment is used to

denote a part of an edge.

edge segment ES; creates an instance of edge segment.

ES.source:=i; de�nes the startnode i of edge e.

ES.target:=j; de�nes the endnode j of edge e.

91

92 CHAPTER 12. GRAPH CLASSES

ES.alpha s:=t1; de�nes the starting point t1 on edge e.

ES.alpha t:=t2; de�nes the endpoint t2 on edge e.

3. De�nition

An instance of the data type node weight is a list of doubles. A lolagraph uses this

data-type as node-type.

12.2 Lolagraph (classlolagraph)

1. De�nition

An instance of the data type lolagraph consists of a LEDA-Graph graph<node weight,

double>.

2. Creation

lolagraph G; creates a LEDA-Graph graph<node weight,double> G

3. Operations

3.1 Helpfunctions

matrix G.shortest path() returns the distance matrix for the graph

G.

edge G.inz edge(node& v; node&w) returns the edge between node v and

node w in graph G.

3.2 Algorithms

list<sol typ> G.abs cent(double& objval) returns the solution of the 1-center prob-

lem of a whole graph, directed and undi-

rected.

list<sol typ> G.center(double&) returns the solution of the 1-center prob-

lem on the nodes of a graph.

list<sol typ> G.median(char wert; double& objval)

returns the solution of the 1-median

problem of the nodes for a directed or

undirected graph.

12.3. DIRECTED GRAPHS (LOLADIRECTED) 93

list<sol typ> G.N median(int ; double&; list<int>& belongto)

returns the solution of the N-median

problem of the nodes for a directed or

undirected graph.

list<sol typ> G.N partitioning(int N; double& objval; list<int>& belongto; bool typ)

returns the solution of the N-

median(typ=1) or N-Center(typ=0)

problem of the nodes for a directed

or undirected graph, using the "node-

partitioning-heuristic" .

list<sol typ> G.Nmed exchange(int N; double& objval; list<int>& belongto)

returns the solution of the N-median

problem of the nodes for a directed or

undirected graph, using the "exchange-

heuristic" .

list<sol typ> G.N greedy(int N; double& objval; list<int>& belongto; bool typ)

returns the solution of the N-median

(typ=1) or N-center (typ=0) problem of

the nodes for an undirected graph, using

the "greedy-heuristic" .

12.3 Directed Graphs (loladirected)

1. De�nition

An instance of the data type loladirected is a directed graph derived of the data type

lolagraph.

2. Creation

loladirected GD; creates a directed lolagraph GD.

3. Operations

list<sol typ> GD.inmedian(double& objval) returns the solution of the 1-inmedian

problemof the nodes for a directed graph.

list<sol typ> GD.outmedian(double& objval)

94 CHAPTER 12. GRAPH CLASSES

returns the solution of the 1-outmedian

problemof the nodes for a directed graph.

12.4 Undirected Graphs (lolaundirected)

1. De�nition

An instance of the data type lolaundirected is a undirected graph derived of the data type

lolagraph.

2. Creation

lolaundirected GU; creates a undirected lolagraph GU .

3. Operations

list<sol typ> GU .abs med(double& objval) returns the solution of the 1-median

problem of a whole graph.

12.5 Trees (lolatree)

1. De�nition

An instance of the data type lolatree is a special undirected lolagraph, containing no loops.

It is derived from the data type lolaundirected.

2. Creation

lolatree T; creates a lolatree T .

3. Operations

3.1 Helpfunctions

bool T .is tree() tests if G is a tree, i.e. containing no loops.

3.2 Algorithms

list<sol typ> T .tree node med(double& objval)

12.6. GRAPH-UTILITIES (GRAPH UTIL) 95

returns the solution of the local 1-median

problem on a tree.

list<sol typ> T .tree med(double& objval)

returns the solution of the absolute 1-median

problem on a tree.

list<sol typ> T .tree center(double& objval)

returns the solution of the absolute 1-center

problem on a tree.

list<sol typ> T .two tree center(double& objval)

returns the solution of the absolute 2-center

problem on a tree.

list<sol typ> T .tree node center(double& objval)

returns the solution of the local 1-center prob-

lem on a tree.

12.6 Graph-utilities (graph util)

1. De�nition

An instance of the data type graph util supports the data type lolagraph. It is derived

from the data type lolagraph. The class graph util provides input and output routines to

handle the class lolagraph.

2. Creation

graph util G ; creates a lolagraph as graph util G.

3. Operations

Input and Output

void G.QGraphView(list<vector> objvec; string normact; facilities&EX;

list<string>& Loctxt; list<edge segment>& EL; bool dir)

draws a lolagraph.

lolagraph G.CreateGraph(string locfile; string adjfile; facilities& EX)

96 CHAPTER 12. GRAPH CLASSES

creates a lolagraph �le and returns a pa-

rameterized graph and the facilities EX.

void G.SaveGraph(ofstream& file; facilities&EX; list<string>&Loctxt)

saves a lolagraph in a �le.

void G.SaveAdjlist(ofstream& file)

saves the adjacent list of a lolagraph in a

�le.

graph util& G.ReadGraph(ifstream& file; facilities&EX; list<string>&Loctxt)

reads a lolagraph �le and returns a param-

eterized graph and the facilities EX.

Chapter 13

DiscreteClasses

13.1 Discrete Locations (discrete)

1. De�nition

An instance of the data type discrete two list of location giving the positions for the demand

and the supply points, and a matrix with travelling costs from a supply point to a demand

point.

2. Creation

discrete D(matrix Cost);

introduces a variable D of type discrete. D is initialized with the cost

matrix M.

3. Operations

3.1 Input and Output

void D.ReadDiscrete(ifstream& file)reads all data for D from file.

void D.DiscView(double objval)

shows the results and locations of the current

problem.

void D.SaveDisc(ofstream& file) saves all data of D into file.

3.2 Algorithms

97

98 CHAPTER 13. DISCRETE CLASSES

double D.UFLP greedy()

returns the solution of the UFL problem

using the "greedy-heuristic" .

double D.UFLP stingy()

returns the solution of the UFL problem

using the "stingy-heuristic" .

double D.UFLP Interchange()

returns the solution of the UFL problem

using the "interchange-heuristic" .

double D.UFLP dualoc()

returns the solution of the UFL problem

using the dualoc as an exact algorithm .

Chapter 14

User InterfaceClass to LOLA

14.1 Algorithm (planealg)

1. De�nition

An instance of the data type planealg consists of the algorithm to solve planar location

problems.

2. Creation

planealg P; creates a variable P of type planealg.

3. Operations

list<location> P .alg solution() returns the solution for the current problem.

void P .WriteOpt(ostream& out) writes the solution for the current problem.

3.1 Algorithms

3.1.1 Median-problems

double P .l1 sum(facilities& EX) computes the optimum for problem class

1=P=:=l1=
P

and returns the objective value.

double P .l1 sum(facilities& EX; restrictions& R)

computes the optimum for problem class

1=P=R = convex=l1=
P

(Konstukrionslinien-

algorithmus) and returns the objective value.

99

100 CHAPTER 14. USER INTERFACE CLASS TO LOLA

double P .l2sqr sum(facilities& EX)

computes the optimum for problem class

1=P=:=l2
2
=
P

and returns the objective value.

double P .l2sqr sum(facilities& EX; restrictions& R)

computes the optimum for problem class

1=P=R = convex=l2
2
=
P

and returns the ob-

jective value.

double P .linf sum(facilities&EX) computes the optimum for problem class

1=P=:=l1=
P

and returns the objective value.

double P .linf sum(facilities& EX; restrictions& R)

computes the optimum for problem class

1=P=R = convex=l1=
P

and returns the ob-

jective value.

double P .l2 sum(facilities& EX; double epsilon)

computes the optimum for problem class

1=P=:=l2=
P

(Weiszfeld-Algorithm) and returns

the objective value.

double P .l2 sum(facilities& EX; barrier& R)

computes the optimum for problem class

1=P=(R;1)=l2=
P

and returns the objective

value, where (R;1) may be one barrier such

as a circle, a segment or a polygon.

double P .l2 sum(facilities&EX; barrier&R; bool erase; int choose; double percent;

double accel; double init ss; double epsilon)

computes the optimum for problem class

1=P=(R;1)=l2=
P

and returns the objective

value, where (R;1) may be one barrier such

as a circle, a segment or a polygon. Same al-

gorithm like the above one but user can choose

from two heuristics(0 or 1) and de�ne a percent-

age(percent) of points to handle, acceleration

factor(accel) and inital step size(init ss) as well

as epsilon for the iterations.

double P .lp sum(facilities& EX; int p; double epsilon; double delta; int iter max)

computes the optimum for problem

class 1=P=:=lp=
P

(Generalized Weiszfeld-

Algorithm) and returns the objective value.

14.1. ALGORITHM (PLANEALG) 101

double P .lp sum(facilities& EX; restrictions& R; int p; double epsilon;

double delta; int iter max)

computes the optimum for problem class

1=P=R=lp=
P

and returns the objective value.

double P .l2sqr qsum(facilities& EX)

computes the optimum for problem class

1=P=:=l2
2
=Q�

P
(Q-criterial problem) and re-

turns the objective value.

double P .l1 2sum(facilities& EX)

computes the optimum for problem class

1=P=:=l1=2 �
P

(bi-criterial problem) and re-

turns the objective value.

double P .linf 2sum(facilities& EX)

computes the optimum for problem class

1=P=:=linf=2 �
P

(bi-criterial problem) and

returns the objective value.

double P .N l1 sum(facilities& EX; int n; matrix& w)

computes the optimum for problem class

N=P=:=l1=
P

and returns the objective value.

double P .N linf sum(facilities& EX; int n; matrix& w)

computes the optimum for problem class

N=P=:=l1=
P

and returns the objective value.

double P .N l2sqr sum(facilities& EX; int n; matrix& w)

computes the optimum for problem class

N=P=:=l2
2
=
P

and returns the objective value.

double P .N l2sqr sum(facilities& EX; int n; matrix& w)

computes the optimum for problem class

N=P=:=lp=
P

(Version 1) and returns the ob-

jective value.

double P .N l2sqr sum(facilities& EX; int n; matrix& w)

computes the optimum for problem class

N=P=:=lp=
P

(Version 2) and returns the ob-

jective value.

102 CHAPTER 14. USER INTERFACE CLASS TO LOLA

double P .L l2 sum M3(facilities &EX)

computes the optimum for problem class

1L=P=:=l2=
P

and returns the objective value.

double P .L l1 sum M3(facilities &EX)

computes the optimum for problem class

1L=P=:=l1=
P

and returns the objective value.

double P .L linf sum M3(facilities &EX)

computes the optimum for problem class

1L=P=:=l1=
P

and returns the objective value.

double P .L lp sum M3(facilities &EX; int p)

computes the optimum for problem class

1L=P=:=lp=
P

and returns the objective value.

double P .L l2 sum M2logM(facilities &EX)

computes the optimum for problem class

1L=P=:=l2=
P

with O(M2logM) and returns

the objective value.

double P .L l2 sum M2(facilities &EX)

computes the optimum for problem class

1L=P=vi = 1=l2=
P

with O(M2) and returns

the objective value.

double P .L RkonvPoly l2 sum(facilities& EX; restrictions& R)

computes the optimum for problem class

1L=P=R = convex=l2=
P

and returns the ob-

jective value.

double P .L RkonvPoly lp sum(facilities& EX; restrictions& R; int p)

computes the optimum for problem class

1L=P=R = convex=lp=
P

and returns the ob-

jective value.

double P .L RkonvPoly l1 sum(facilities& EX; restrictions& R)

computes the optimum for problem class

1L=P=R = convex=l1=
P

and returns the ob-

jective value.

14.1. ALGORITHM (PLANEALG) 103

double P .L RkonvPoly linf sum(facilities& EX; restrictions& R)

computes the optimum for problem class

1L=P=R = convex=linf=
P

and returns the ob-

jective value.

double P .L RkonvPoly block sum(facilities&EX; restrictions&R; Blocknorm&B)

computes the optimum for problem class

1L=P=R = convex=lblock=
P

and returns the

objective value.

3.1.2 Center-problems

double P .l1 max(facilities& EX)

computes the optimum for problem class

1=P=:=l1=max and returns the objective value.

double P .l1 max(facilities& EX; restrictions& R)

computes the optimum for problem class

1=P=R = convex=l1=max and returns the ob-

jective value.

double P .l1 v1 max(facilities& EX)

computes the optimum for problem class

1=P=vi = 1=l1=max and returns the objective

value.

double P .l2 max(facilities& EX)

computes the optimum for problem class

1=P=:=l2=max and returns the objective value.

double P .l2 max(facilities& EX; restrictions& R)

computes the optimum for problem class

1=P=R = convex polyhedron; vi = 1=l2=max

and returns the objective value.

double P .linf max(facilities& EX)

computes the optimum for problem class

1=P=:=l1=max and returns the objective value.

double P .linf max(facilities& EX; restrictions& R)

104 CHAPTER 14. USER INTERFACE CLASS TO LOLA

computes the optimum for problem class

1=P=R = convex=l1=max and returns the ob-

jective value.

double P .linf v1 max(facilities& EX)

computes the optimum for problem class

1=P=vi = 1=l1=max and returns the objective

value.

double P .elzhearn(facilities& EX)

computes the optimum for Elzinga-Hearn-

Algorithm and returns the objective value.

double P .N linf max(facilities& EX; int N; matrix& W)

computes the optimum for problem class

N=P=:=l1=max and returns the objective value.

double P .N l1 max(facilities& EX; int N; matrix& W)

computes the optimum for problem class

N=P=:=l1=max and returns the objective value.

double P .L l2 max M4(facilities &EX)

computes the optimum for problem class

1L=P=:=l2=max and returns the objective value.

double P .L l1 max M4(facilities &EX)

computes the optimum for problem class

1L=P=:=l1=max and returns the objective value.

double P .L linf max M4(facilities &EX)

computes the optimum for problem class

N=P=:=l1=max and returns the objective value.

double P .L l2 max MlogM(facilities &EX)

computes the optimum for problem class

1L=P=vi = 1=l2=max with O(MlogM) and re-

turns the objective value.

double P .L l2 max M2logM(facilities &EX)

computes the optimum for problem class

1L=P=:=l2=max with O(M2logM) and returns

the objective value.

14.2. ALGORITHM (LGRAPHALG) 105

double P .L lp max M4(facilities &EX; int p)

computes the optimum for problem class

1L=P=:=lp=max and returns the objective value.

14.2 Algorithm (lgraphalg)

1. De�nition

An instance of the data type lgraphalg consists of the algorithms to solve location problems

with a network or graph.

2. Creation

lgraphalg GrA; creates a variable GrA of type lgraphalg.

3. Operations

list<sol typ> GrA.alg solution() returns the solution for the current problem.

void GrA.WriteOpt(ostream& out)

writes the solution for the current problem.

3.1 Algorithms

double GrA.inmedian(loladirected& G)

computes the In-Median for problem class

1=GD=:=d(V; V)=
P

and returns the objective

value.

double GrA.outmedian(loladirected& G)

computes the Out-Median for problem class

1=GD=:=d(V; V)=
P

and returns the objective

value.

double GrA.median(loladirected& G)

computes the median for problem class

1=GD=:=d(V; V)=
P

and returns the objective

value.

double GrA.median(lolaundirected& U)

106 CHAPTER 14. USER INTERFACE CLASS TO LOLA

computes the optimum for problem class

1=G=:=d(V; V)=
P

and returns the objective

value.

double GrA.abs inmedian(loladirected& G)

computes the In-Median for problem class

1=GD=:=d(V;G)=
P

and returns the objective

value.

double GrA.abs outmedian(loladirected& G)

computes the Out-Median for problem class

1=GD=:=d(V;G)=
P

and returns the objective

value.

double GrA.abs median(loladirected& G)

computes the median for problem class

1=GD=:=d(V;G)=
P

and returns the objective

value.

double GrA.abs median(lolaundirected& U)

computes the optimum for problem class

1=G=:=d(V;G)=
P

and returns the objective

value.

double GrA.center(lolaundirected& G)

computes the optimum for problem class

1=G=:=d(V; V)=max and returns the objec-

tive value.

double GrA.center(loladirected& G)

computes the optimum for problem class

1=GD=:=d(V; V)=max and returns the ob-

jective value.

double GrA.abs center(lolaundirected& U)

computes the optimum for problem class

1=G=:=d(V;G)=max and returns the objective

value.

double GrA.abs center(loladirected& G)

computes the optimum for problem class

1=GD=:=d(V;G)=max and returns the ob-

jective value.

14.2. ALGORITHM (LGRAPHALG) 107

double GrA.loc tree median(lolatree& U)

computes the optimum for problem class

1=T=:=d(V; V)=
P

and returns the objective

value.

double GrA.abs tree median(lolatree& U)

computes the optimum for problem class

1=T=:=d(V; T)=
P

and returns the objective

value.

double GrA.loc tree center(lolatree& U)

computes the optimum for problem class

1=T=:=d(V; V)=max and returns the objective

value.

double GrA.abs tree center(lolatree& U)

computes the optimum for problem class

1=T=:=d(V; T)=max and returns the objec-

tive value.

double GrA.tree two center(lolatree& U)

computes the optimum for problem class

2=T=:=d(V; T)=max and returns the objec-

tive value.

double GrA.N median cplex(lolaundirected& U; int n; list<int>& belongto)

computes the optimum for problem class

N=G=:=d(V; V)=
P

using cplex and returns

the objective value.

double GrA.N median partitioning(lolaundirected&U; intn; list<int>& belongto)

computes the optimum for problem

class N=G=:=d(V; V)=
P

using the node-

partitioning-heuristic and returns the ob-

jective value, in the list 'belongto' the

membership-information for every node is

contained.

double GrA.N median exchange(lolaundirected& U; int n; list<int>& belongto)

computes the optimum for problem class

N=G=:=d(V; V)=
P

using the exchange-

heuristic and returns the objective value,

in the list 'belongto' the membership-

information for every node is contained.

108 CHAPTER 14. USER INTERFACE CLASS TO LOLA

double GrA.N median greedy(lolaundirected& U; int n; list<int>& belongto)

computes the optimum for problem class

N=G=:=d(V; V)=
P

using the greedy-heuristic

and returns the objective value, in the list 'be-

longto' the membership-information for every

node is contained.

double GrA.N center partitioning(lolaundirected&U; intn; list<int>& belongto)

computes the optimum for problem

class N=G=:=d(V; V)=max using the node-

partitioning-heuristic and returns the ob-

jective value, in the list 'belongto' the

membership-information for every node is

contained.

double GrA.N center greedy(lolaundirected& U; int n; list<int>& belongto)

computes the optimum for problem class

N=G=:=d(V; V)=max using the greedy-

heuristic and returns the objective value,

in the list 'belongto' the membership-

information for every node is contained.

list<vector> GrA.medPareto bi(lolaundirected& U; list<edge segment>& wholesol)

computes the optimum for problem class

1=G=:=d(V;G)=2 �
P

par.

list<vector> GrA.medPareto bi(lolaundirected& U; list<edge segment>& wholesol)

computes the optimum for problem class

1=G=:=d(V;G)=Q �
P

par.

list<vector> GrA.medPareto bi(lolaundirected& U; list<edge segment>& wholesol)

computes the optimum for problem class

1=GD=:=d(V;G)=Q �
P

par.

list<vector> GrA.medPareto bi(lolaundirected& U; list<edge segment>& wholesol)

computes the optimum for problem class

1=GD=:=d(V; V)=Q�
P

par.

list<vector> GrA.medPareto bi(lolaundirected& U; list<edge segment>& wholesol)

computes the optimum for problem class

1=G=:=d(V; V)=Q�
P

par.

14.3. ALGORITHM (GAUGEALG) 109

list<vector> GrA.medPareto bi(lolaundirected& U; list<edge segment>& wholesol)

computes the optimum for problem class

1=GD=:=d(V; V)=Q�maxpar.

list<vector> GrA.medPareto bi(lolaundirected& U; list<edge segment>& wholesol)

computes the optimum for problem class

1=G=:=d(V; V)=Q�maxpar.

list<vector> GrA.medPareto bi(lolaundirected& U; list<edge segment>& wholesol)

computes the optimum for problem class

1=GD=:=d(V;G)=Q �maxpar.

list<vector> GrA.medPareto bi(lolaundirected& U; list<edge segment>& wholesol)

computes the optimum for problem class

1=G=:=d(V;G)=Q �
P

lex.

list<vector> GrA.medPareto bi(lolaundirected& U; list<edge segment>& wholesol)

computes the optimum for problem class

1=GD=:=d(V;G)=Q �
P

lex.

list<vector> GrA.medPareto bi(lolaundirected& U; list<edge segment>& wholesol)

computes the optimum for problem class

1=GD=:=d(V; V)=Q�
P

lex.

list<vector> GrA.medPareto bi(lolaundirected& U; list<edge segment>& wholesol)

computes the optimum for problem class

1=G=:=d(V; V)=Q�
P

lex.

list<vector> GrA.medPareto bi(lolaundirected& U; list<edge segment>& wholesol)

computes the optimum for problem class

1=GD=:=d(V; V)=Q�maxlex.

list<vector> GrA.medPareto bi(lolaundirected& U; list<edge segment>& wholesol)

computes the optimum for problem class

1=G=:=d(V; V)=Q�maxlex.

14.3 Algorithm (gaugealg)

110 CHAPTER 14. USER INTERFACE CLASS TO LOLA

1. De�nition

An instance of the data type gaugealg consists of the algorithm to solve planar location

problems with gauges as the distance functions.

2. Creation

gaugealg GA; creates a variable GA of type gaugealg.

3. Operations

list<location> GA.alg solution() returns the solution for the current problem.

void GA.WriteOpt(ostream& out)

writes the solution for the current problem.

Algorithms

double GA.sum(list<polygauge>& LG; list<int>& Ln; facilities& EX)

computes the optimum for problem class

1=P=:=
=
P

and returns the objective value.

double GA.bi crit sum(list<polygauge>& LG; list<int>& Ln; facilities& EX)

computes the optimum for problem class

1=P=:=
=2 �
P

par and returns the number of

di�erent situations of the solution.

double GA.L block sum M3(list<polygauge>&LG; list<int>&Ln; facilities&Ex)

1L=P=:=
B=
P

with O(M3).

double GA.L block max M4(list<polygauge>&LG; list<int>&Ln; facilities&Ex)

1L=P=:=
B=max withO(M4).

double GA.L RkonvPoly block sum(list<polygauge> &LG; list<int> &Ln;

facilities EX; restrictions &Restr)

1L=P=:=
B=max with O(M4).

Chapter 15

LOLAErrorMessages

The LOLA speci�c error messages are numbers of 4 digits (XYZZ). Each digit has a special

meaning.

X identi�es the general problem class in which the function that was called is included.

Y identi�es the class in which the function that was called is included.

ZZ identi�es the function in which the error occurred.

Here we give a table of all currently used error numbers.

X Y ZZ error in

1 Y ZZ LOLA planar library

2 Y ZZ LOLA graph library

3 Y ZZ LOLA discrete library

1 0 ZZ LOLA frontend

1 1 ZZ class loc vector

1 2 ZZ class location

1 3 ZZ class facilities

1 4 ZZ restrictions

1 5 ZZ class facs util

1 6 ZZ gauge util

1 7 ZZ gauges

1 8 ZZ barriers

2 0 ZZ class lolagraph

2 1 ZZ class graph util

2 2 ZZ class lolatree

3 1 ZZ discrete

In the following each error code will be speci�ed in detail.

111

112 CHAPTER 15. LOLA ERROR MESSAGES

X Y ZZ error in

1 0 01 algoch ()

1 0 02-12 main ()

1 1 01 locvector :: rotate ()

1 2 01 location :: norm ()

02 location :: r angle ()

03 location :: loc2point ()

04 location :: loc2vector ()

05 location :: test coords ()

06 location :: test weights ()

07,08 location :: operator[]

09,10 location :: operator()

11 location :: operator/

12 location :: WriteAsPolygonList

1 3 01,02 facilities :: n median objective ()

03 facilities :: median objective ()

04 facilities :: WriteOpt ()

05 facilities :: remove ()

06 facilities :: N lp sum ()

07 facilities :: linf v1 max ()

08-30 facilities :: N linf max mps ()

31-33 facilities :: N l1 sum ()

34,35 facilities :: refname ()

36-37 facilities :: N linf max ()

38-41 facilities :: gauge sum ()

42-46 facilities :: gauge bi crit sum ()

1 4 01 restr circle :: restr circle ()

02-04 check simplicity ()

05 restr poly :: proj v1 l2 max ()

06 retsr rect :: proj v1 l2 max ()

07 restr rect :: operator[]

08 restr rect :: operator()

09,10 ReadRestr ()

11 restriction :: proj v1 l2 max ()

12 inside all ()

13 polygon barrier :: polygon barrier ()

14 polygon barrier :: polygon barrier

1 5 01-07 fac util :: ReadLoc ()

08-11 fac util :: ReadMat ()

12 fac util :: SaveLoc ()

13 fac util :: SaveLoc Res ()

14 fac util :: View ()

1 6 01,02 ReadGNumber ()

03-06 ReadGauge ()

07,08 ReadLPGauge ()

09,10 ReadLMGauge ()

113

11 ViewGauge ()

1 7 01-03 polygauge :: polygauge ()

04 polygauge :: scale

05 polygauge :: operator []

06,07 polygauge :: conepoints

08,09 polygauge :: coneseg ()

10,11 polygauge :: conetest ()

12 polygauge :: pl inCone

13 polygauge :: ll inCone

14 polygauge :: maxi

15 polygauge :: mini

16 polygauge :: max di�

17-21 mixgauge :: mixgauge ()

22 mixgauge :: operator [] ()

23 mixgauge :: conetype ()

24,25 mixgauge :: conepoints ()

26,27 mixgauge :: coneseg ()

28,29 mixgauge :: conetest ()

30 mixgauge :: pl inCone ()

31 mixgauge :: ll inCone ()

32 mixgauge :: maxi ()

33 mixgauge :: mini ()

34 mixgauge :: max di� ()

35 mixgauge :: scale ()

1 8 01,02 barrier :: l2 sum ()

03 halfspace :: compute ()

04 tree ::
ow rank ()

05 tree :: crash rank ()

06 sbo :: opt shdw segments ()

2 0 01 lolagraph :: shortest path ()

02 lolagraph :: inz edge ()

03 lolagraph :: parlocation ()

2 1 01 graph util :: LGraphView ()

02 graph util :: ReadAdjlist

03 graph util :: SaveAdjlist ()

04 graph util :: SaveGraph ()

05-12 graph util :: ReadGraph ()

2 2 01 lolatree :: lolatree ()

02-04 lolatree :: tree med ()

3 1 01 discrete :: UFLP dualoc ()

02 discrete :: SaveDisc ()

03-05 discrete :: disc read ()

06-07 discrete :: Read discrete ()

IMPRESSUM

Coordinators:

Horst W. Hamacher, Holger Hennes, Kathrin Klamroth, Martin C. M�uller, Stefan

Nickel and Anita Sch�obel.

Contributors:

Ingo Bartling, Sonja Becker, Annette Brockmann, Chokri Hamdaoui, Holger Hennes,

Karin Jung, J�org Kalcsics, Kathrin Klamroth, Ralf Leipe, Martin C. M�uller, Stefan

Nickel, Michael A. Ochs, Lothar Schnell, Karen Schulze, Yingxin Wang and Ansgar

Wei�ler.

Home-page: http:nnwww.mathematik.uni-kl.den~lola

E-mail: lola@mathematik.uni-kl.de

Tel: (+49)/631/205-4558, (+49)/631/205-2511

Fax: (+49)/631/29081

114

